
NASA/CR-2001-210651

ICASE Report No. 2001-2

A Faster-than Relation for Asynchronous Processes

Gerald Liittgen

The University of Sheffield, Sheffield, United Kingdom

Walter Vogler

Universitiit Augsburg, Augsburg, Germany

January 2001

The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key

part in helping NASA maintain this

important role.

The NASA STI Program Office is operated by

Langley Research Center, the lead center for
NASA's scientific and technical information.

The NASA STI Program Office provides

access to the NASA STI Database, the

largest collection of aeronautical and space

science STI in the world. The Program Office
is also NASA's institutional mechanism for

disseminating the results of its research and

development activities. These results are

published by NASA in the NASA STI Report

Series, which includes the following report

types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results

of NASA programs and include extensive

data or theoretical analysis. Includes

compilations of significant scientific and
technical data and information deemed

to be of continuing reference value. NASA's

counterpart of peer-reviewed formal

professional papers, but having less

stringent limitations on manuscript

length and extent of graphic

presentations.

TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain
minimal annotation. Does not contain

extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATIONS.

Collected papers from scientific and

technical conferences, symposia,

seminars, or other meetings sponsored or

cosponsored by NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to
NASA's mission.

Specialized services that complement the

STI Program Office's diverse offerings include

creating custom thesauri, building customized

data bases, organizing and publishing

research results.., even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home

Page at http://www.sti.nasa.gov

• Email your question via the Internet to

help@ sti.nasa.gov

• Fax your question to the NASA STI

Help Desk at (301) 621-0134

• Telephone the NASA STI Help Desk at

(301) 621-0390

Write to:

NASA STI Help Desk

NASA Center for AeroSpace Information
7121 Standard Drive

Hanover, MD 21076-1320

NASA/CR-2001-210651

ICASE Report No. 2001-2

-- :-%i

_i__ _ ._i_i!i....... _; _

A Faster-than Relation for Asynchronous Processes

Gerald Liittgen

The University of Sheffield, Sheffield, United Kingdom

Walter Vogler

UniversiEit Augsburg, Augsburg, Germany

ICASE

NASA Langley Research Center

Hampton, Virginia

Operated by Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS 1-97046

January 2001

Available fi'om tile following:

NASA Center for AeroSpace hffomlation (CASI)

7121 Standard Drive

Hanover, MD 21076 1320

(301) 621 0390

National TectHficalhffomlation Service(NTIS)

5285 Port Royal Road

Spfingfield, VA22161 2171

(703) 487 4650

A FASTER-THAN RELATION FOR ASYNCHRONOUS PROCESSES*

GERALD LUTTGENt AND WALTER VOGLER$

Abstract. This paper introduces a novel (bi)simulation-based faster-than preorder which relates asyn-

chronous processes with respect to their worst-case timing behavior. The studies are conducted for a

conservative extension of the process algebra CCS, called TACS, which permits the specification of maximal

time bounds of actions. TACS complements work in plain process algebras which compares asynchronous

processes with respect to their functional reactive behavior only, and in timed process algebras which focus

on analyzing synchronous processes. The most unusual contribution of this paper is in showing that the pro-

posed faster-than preorder coincides with two other and at least equally appealing preorders, one of which

considers the absolute times at which actions occur in system runs. The paper also develops the semantic

theory of TACS: it characterizes the largest precongruence contained in the faster-than preorder, presents

an axiomatization in a fragment of the algebra, and investigates a corresponding weak faster-than preorder.

A small example relating two implementations of a simple storage system testifies to the practical utility of

the new theory.

Key words, asynchronous systems, bisimulation, faster-than preorder, process algebra, timing behavior

Subject classification. Computer Science

1. Introduction. Process algebras [7, 8, 18, 21, 26] provide a widely studied framework for reasoning

about the behavior of concurrent systems. Early approaches, including Milner's Calculus of Communicating

Systems (CCS) [26], focused on semantic issues of asynchronous processes, where the relative speeds between

processes running in parallel are not bounded, i.e., one process may be arbitrarily slower or faster than

another. This leads to a simple and mathematically elegant semantic theory analyzing the functional behavior

of systems regarding their causal interactions with their environments. To include time as an aspect of system

behavior, timed process algebras [5, 19, 28, 32, 34, 38] were introduced. They usually model synchronous

systems where processes running in parallel are under the regime of a common global clock and have a

fixed speed. A well-known representative of discrete timed process algebras is Hennessy and Regan's Timed

Process Language (TPL) [19] which extends CCS by a timeout operator and a clock prefix demanding

that exactly one time unit must pass before activating the argument process. Research papers on timed

process algebras usually do not relate processes with respect to speed; the most notable exception is work by

Moller and Torts [29] which considers a faster-than preorder within a CCS-based setting, where processes

are essentially attached with lower time bounds [28]. In practice, however, often upper time bounds are

known to a system designer, determining how long a process may delay its execution. These can be used to

compare the worst-case timing behavior of processes. The assumption of upper time bounds for asynchronous

processes already is exploited in distributed algorithms [24] and was investigated by the second author in the

*This work was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046

while the authors were in residence at ICASE, NASA Langley Research Center, Hampton, Virginia 23681-2199, USA.

tDepartment of Computer Science, The University of Sheffield, Regent Court, 211 Portobello Street, Sheffield S1 4DP, U.K.,

e-maih g.luett gen@dcs.shef.ac.uk.

$Institut fiir Informatik, Universitgt Augsburg, D-86135 Augsburg, Germany, e-maih vogler@informatik.uni-augsburg.de.

setting of Petri nets [9, 22, 35, 36]. The latter work adapted DeNicola and Hennessy's notion of testing [16],

where the derived must-preorder is interpreted as faster-than relation. Recently, these results have been

transferred to a process-algebraic setting [23, 3"/] whose semantics, however, is still based on testing.

In this paper we develop a novel (bi)simulation-based approach to compare asynchronous systems with

respect to their worst-case timing behavior. To do so, we extend CCS by a rather specific notion of clock

prefixing "a.", where a stands for one time unit or a single clock tick. In contrast to TPL, we interpret a.P

as a process which may delay at most one time unit before executing P. Similar to TPL, however, we

view the occurrence of actions as instantaneous. This results in a new process algebra extending CCS, to

which we refer as Timed Asynchronous Communicating Systems (TACS). To make our intuition of upper-

bound delays more precise, consider the processes a.a.0 and a.0, where a denotes an action or port as in

CCS. While the former process may delay an enabled communication on port a by one time unit, the latter

process must engage in the communication. In this sense, action a is non-urgent in a.a.0 but urgent in a.0.

However, if a communication on port a is not enabled, then process a.0 may wait until some communication

partner is ready. Technically, we allow a.P to wait in any case; to enforce a communication resulting in

the internal action T, a time step in TACS is preempted by an urgent T. This is similar to timed process

algebras employing the maximal progress assumption [19, 38]; however, in these algebras and in contrast to

TACS, any internal computation is considered to be urgent. For TACS we introduce a (bi)simulation-based

faster-than preorder which exploits the knowledge of upper time bounds: a process is faster than another if

both are linked by a relation which is a strong bisimulation for actions and a simulation for time steps.

The main contribution of this paper is the formal underpinning of our preorder which justifies why it is

a good candidate for a faster-than relation on processes. There are at least two very appealing alternative

definitions for such a preorder. First, one could allow the slower process to perform extra time steps when

simulating an action or time step of the faster process. Second and probably even more important is the

question of how exactly the faster process can match a time step and the subsequent behavior of the slower

one. For illustrating this issue, consider the runs aaab and aaab which might be exhibited by some processes.

One can argue that the first run is faster than the second one since action a occurs earlier in the run and

since action b occurs at absolute time 2 in both runs, measured from the start of each run. With this

observation in mind, we define a second variant of our faster-than preorder, where a time step of the slower

process is either simulated immediately by the faster one or might be performed later on. As a main result,

we prove that both variants coincide with our faster-than preorder that has a more elegant and concise

definition. This justifies our faster-than preorder as a reference preorder for relating asynchronous processes

with respect to their worst-case timing behavior. In addition, this paper develops the semantic theory of

the faster-than preorder: we characterize the coarsest precongruence contained in our preorder, demonstrate

that TACS with this precongruence is a conservative extension of CCS with bisimulation, and axiomatize our

precongruence for finite sequential processes. We also study the corresponding weak faster-than preorder,

which abstracts from internal computation, and its semantic theory. To testify to the utility of our novel

framework, we apply it to a small example dealing with two implementations of a simple storage system.

The remainder of this paper is organized as follows. The next section presents the process algebra

TACS, while Sec. 3 introduces three variants of a faster-than preorder and shows all of them to coincide.

Sec. 4 develops the semantic theory of our preorder and its "weak" correspondence, which is then applied to

an example in Sec. 5. Finally, Secs. 6 and 7 discuss related work and present our conclusions, respectively.

2. Timed AsynchronousCommunicating Systems. This section defines the syntax and semantics

of our novel process algebra Timed Asynchronous Communicating Systems (TACS) which conservatively

extends CCS [26] by a concept of global, discrete time. This concept is introduced by a non-standard

interpretation of clock prefixing "_." as mentioned in the introduction. Intuitively, a process a.P can at

most (but must not) delay one time unit before having to execute process P, provided that P can engage in

a communication with the environment or in some internal computation. The semantics of TACS is based on

a notion of transition system that involves two kinds of transitions, action transitions and clock transitions.

Action transitions, like in CCS, are local handshake communications in which two processes may synchronize

to take a joint state change together. A clock represents the progress of time, which manifests itself in a

recurrent global synchronization event, the clock transition. As indicated above, action and clock transitions

are not orthogonal concepts, since a clock transition can only occur if the process under consideration cannot

engage in an urgent internal computation.

Syntax of TACS. Let A be a countable set of actions, or ports, not including the distinguished unobservable,

internal action T. With every a E A we associate a complementary action _. We define A =dr {al a E A}

and take .4 to denote the set A U X U {T} of all actions. Complementation is lifted to A U X by defining

a ----dfa. As in CCS [26], an action a communicates with its complement _ to produce the internal action T.

We let a, b,... range over A U A and (_,/3,... over .4 and, moreover, we represent (potential) clock ticks by

the symbol a. The syntax of our language is then defined as follows:

P ::= 0 I x I _.P I (7.P I P+P I PIP I P\L I P[f] I #x.P

where x is a variable taken from a countably infinite set F of variables, L C_ .4 \ {v} is a restriction set,

and f : .4 -+ .4 is a finite relabeling. A finite relabeling satisfies the properties f(v) = T, f(_) = f(a),

and I{(_ If(a) _ (_}l < oc. The set of all terms is abbreviated by _ and, for convenience, we define L =dr

{_l a E L}. Moreover, we use the standard definitions for the semantic sort sort(P) C_A UA of some term P,

free and bound variables (where #x binds x), open and closed terms, and contexts (terms with a "hole").

A variable is called guarded in a term if each occurrence of the variable is in the scope of an action prefix.

Moreover, we require for terms of the form #x.P that x is guarded in P. We refer to closed and guarded

terms as processes, with the set of all processes written as 7), and denote syntactic equality by -.

Semantics of TACS. The operational semantics of a TACS term P E _ is given by a labeled transition

system (_, .4 U {a}, --% P) where _ is the set of states, .4 U {a} the alphabet, --+ C__ x .4 U {a} x _ the

transition relation, and P the start state. Before we proceed, it is convenient to introduce sets U(P), for all

terms P E _, which include the urgent actions, as discussed in the introduction, in which P can initially

engage. These sets are inductively defined along the structure of P, as shown in Table 2.1. Strictly speaking,

U(P) does not necessarily contain all urgent actions. For example, for P -- T.0 + a.a.0 we have U(P) --- {T},

although action a is also urgent, because the clock transition of P is preempted according to our notion of

maximal progress. However, in the sequel we need the urgent action set of P only for determining whether P

can initially perform an urgent T. For this purpose, our syntactic definition of urgent action sets is just fine

since T E L/(P) if and only if T is urgent in P.

Now, the operational semantics for action transitions and clock transitions can be defined via structural

operational rules which are displayed in Tables 2.2 and 2.3, respectively. For action transitions, the rules

are exactly the same as for CCS, with the exception of our new clock-prefix operator. For clock transitions,

TABLE 2.1

Urgent action sets

_(0) :df 0

N(a.P) :df {OZ}

U (o-.P) =df

_//(X) =df 0

//(P --Q) =df _//(P) [--J_//(Q)

L/(PIQ) =df L/(P) u L/(Q) u {T [L/(P) cnL/(Q) ¢ O}

L/(P \ L) =df _//(P) \ (L tOL)

L/(P[f]) =df {f(a) la • L/(P)}

gt(px.P) =df g/(P)

TABLE 2.2

Operational semantics for TACS (action transitions)

__ p _% p,
Act Pre

a.P --_ P mP __2_+p,

P _ p' Q --_ Q,
Sum1 Sum2

p + Q _2_+ p, p + Q __Z+ Q,

p---_p, Q--t--_Q, p.-.-%p, Q---_Q,
Coml Com2 Com3

PIQ _ P'IQ PIQ --_ pIQ, PIQ --2-+ P'IQ'

p---_p, p---_p, p---_p,
Rel Res a _ L tOL Rec

p[f] _ p,[f] P \ L __E+p, \ L #x.P __2_+P'[px.P/x]

our semantics is set up such that, if T • Lt(P), then a clock tick a of P is inhibited, in accordance with

our adapted variant of maximal progress. For the sake of simplicity, let us write P _Z+ p, instead of

(p, % pt) • __% for 7 • .4 U {a}, and say that P may engage in 7 and thereafter behave like pt. Sometimes

it is also convenient to write P _Z+ for 3P'. P _Z+ p,.

According to our operational rules, the action-prefix term a.P may engage in action a and then behave

like P. If a # T, then it may also idle, i.e., engage in a clock transition to itself, as process 0 does. The

clock-prefix term a.P can engage in a clock transition to P and, additionally, it can perform any action

transition that P can since a represents a delay of at most one time unit. The summation operator +

denotes nondeterministic choice such that P + Q may behave like P or Q. Time has to proceed equally on

both sides of summation, whence P + Q can engage in a clock transition and delay the nondeterministic

choice if and only if both P and Q can. As a consequence, e.g., process a.a.0 + T.0 cannot engage in a clock

transition; in particular, a is not urgent, but nevertheless it has to occur without delay if it occurs at all. The

restriction operator \L prohibits the execution of actions in L U L and, thus, permits the scoping of actions.

P[f] behaves exactly as P where actions are renamed by the relabeling f. The term PIQ stands for the

parallel composition of P and Q according to an interleaving semantics with synchronized communication

on complementary actions resulting in the internal action T. Again, time has to proceed equally on both

sides of the operator. The side condition ensures that PIQ can only progress on a, if it cannot engage in

any urgent internal computation, in accordance with our notion of maximal progress. Finally, px. P denotes

recursion, i.e., px. P behaves as a distinguished solution of the equation x = P.

The operational semantics for TAC S possesses several important properties, in analogy to many temporal

process algebras [19, 38]. First, it is time-deterministic, i.e., processes react deterministically to clock ticks,

reflecting the intuition that progress of time does not resolve choices. Formally, P -_ P' and P -_ P"

implies P' - P", for all P, P', P" • _. Second, according to our variant of maximal progress, a term P can

TABLE 2.3

Operational semantics for TACS (clock transitions)

_ p___p, Q--._Q, p--_p,
tNil tSum tRes

0--_ 0 P +Q--_-+ P' +Q' P\ L--_ P'\ L

_ p__p, Q-_Q' p-_p'
tAct tCom T _ Lt(PIQ) tRel

a.P --_ a.P PIQ -_ P'IQ' P[f] --£+ P'[f]

tPre tRec
mP --_ P

p --_ p'

#x.P --£4 P'[px.P/x]

engage in a clock transition exactly if it cannot engage in an urgent internal transition. Formally, P --_ if

and only if T _ L/(P), for all P E _.

We conclude this section by two simple lemmas which will be used in the next sections. The first one

highlights the implications of guardedness in our calculus. As with the abovementioned properties of time

determinism and maximal progress, it can be proved via induction on the structure of P.

LEMMA 2.1. Let P,P', Q E _, let x E)2 be guarded in P, and let 7 E _40 {_}.

1. P __Z+p, implies P[px.Q/x] __Z+P'[px.Q/x].

2. P[px.Q/x] --7-+ P'[px.Q/x] implies 3P" E _. P --7-+ P" and P'[px.Q/x] - P"[px.Q/x].

The second lemma concerns the sort of a term P, which is the set of labels of all transitions reachable in

the transition system with start state P, i.e., sort(P) =df {(_ E .413P t. P ---+* Pt --_ }, where ---+* denotes

the reflexive and transitive closure of ---+ (when abstracting from transition labels).

LEMMA 2.2. The set sort(P) of any term P E P is finite.

This statement follows from the facts that terms have finite length and that relabelings f satisfy the condition

]{c_] f(c_) _ c_}] < oc. The above lemma establishes the well-definedness of some terms constructed below,

which include a generalization of the summation operator indexed over actions contained in sorts. Note that

TACS just provides a binary summation operator, i.e., only finite summations can be expressed.

3. Design Choices for (Bi)Simulation-based Faster-than Relations. In the following we define

a reference faster-than relation, called naive faster-than preorder, which is inspired by Milner's notions of

simulation and bisimulation [26]. Our main objective is to convince the reader that this simple faster-than

preorder with its concise definition is not chosen arbitrarily. This is done by showing that it coincides with

two other preorders which formalize a notion of faster-than as well and which are possibly more intuitive.

The semantic theory of our faster-than relation will then be developed in the next section.

DEFINITION 3.1 (Naive faster-than preorder). A relation 7_ C 7) x 7) is a naive faster-than relation if

the following conditions hold for all (P, Q} • 7_ and (_ • .4.

1. P --_ P' implies 3Q'. O --if+ O' and (P', O'} • 7_.

2. O --_ O' implies 3P'. P --if+ P' and (P', O'} • 7_.

3. P -%+ P' implies 3Q'. O _ O' and (P', O'} • 7_.

We write P _nO if (P, Q} • 7_ for some naive faster-than relation 7_.

Note that the behavioral relation _n' as well as all other behavioral relations on processes defined in the

sequel, can be extended to open terms by the usual means of closed substitution [26]. It is fairly easy to

see that _n is a preorder, i.e., it is transitive and reflexive; moreover, _n is the largest naive faster-than

relation. Technically speaking, the naive faster-than preorder refines bisimulation on action transitions by

requiring simple simulation on clock transitions. Intuitively, P _n Q holds if P is faster than (or at least as

fast as) Q, and if both processes are functionally equivalent (cf. Clauses (1) and (2)). Here, "P is faster

than O" means the following: if P may let time pass and the environment of P has to wait, then this should

also be the case if one considers the slower (or equally fast) process O instead (cf. Clause (3)). However, if O

lets time pass, then P is not required to match this behavior. Intuitively, we use bounded delays and are,

accordingly, interested in worst-case behavior. Hence, clock transitions of the fast process must be matched,

but not those of the slow process; behavior after an unmatched clock transition can just as well occur quickly

without the time step, whence it is catered for in Clause (2). We come back to this issue shortly.

As the naive faster-than preorder is the basis of our approach, it is very important that its definition

is intuitively convincing. There are two immediate questions which arise from our definition and are dealt

with separately in the following two sections.

3.1. Question I. The first question emerges from the observation that Clauses (1) and (3) of Def. 3.1

require that an action or a time step of P must be matched with just this action or time step by Q. What if

we are less strict? Maybe we should allow the slower process Q to perform some additional time steps when

matching the behavior of P. This idea is formalized in the following definition of a variant of our faster-than
a +

preorder, which we refer to as delayed faster-than preorder. Here, _ and -_* stand for the transitive

and the transitive reflexive closure of the clock transition relation --_, respectively.

DEFINITION 3.2 (Delayed faster-than preorder). A relation 7_ C_7) × 7) is a delayed faster-than relation

if the following conditions hold for all (P, Q) • 7_ and (_ • ,4.

1. P -_ P' implies 3Q'. Q -_*-_ -_* Q' and (P', Q') • 7_.

2. Q -_ Qt implies SP _.P -_ P_ and (P_, Q_) • 7_.

3. P -_ P_ implies SQ _.Q --5++ Q_ and (P_, Q_) • 7_.

We write P _Q g (P, Q) • 7_ for some delayed faster-than relation 7_.

As usual, one can derive that _d is a preorder and that it is the largest delayed faster-than relation. In

the following we will show that both preorders _n and _d coincide. The proof of this first coincidence

result is based on a syntactic relation _ on terms, which is defined next and which is similar to the progress

preorder used in [23]. The objective for its definition is to provide a useful technical handle on the relation

between clock transitions and speed, analogue to the "up to"-techniques employed for reasoning about

bisimulation [33]. Thus, the relation _ is constructed such that we have property (*): P -_ P_ implies

Pt _- P, for any P, P_ • _ (cf. Prop. 3.7(1)).

DEFINITION 3.3. The relation _- C_ P × P is defined as the smallest relation satisfying the following

properties, for all P, P', Q, Q' • P.

Always:

P_ _ P and Q_ _ Q implies:

P_ _ P and x is guarded in P implies:

(1) P :_ P (2) P :_ a.P

(3) P'IQ'_PIQ (4) P'+Q':_P+Q

(5) P' \ L :_ P \ L (6) P'[f] _ P[f]

(7) P'[px. P/x] _ #x. P

Note that relation _ is not transitive and that it is not only defined for processes but for arbitrary, especially

for open terms. The crucial clauses of the above definition are Clauses (2) and (7). Since we want P --_ pt

to imply pt _ p, we clearly must include Clause (2). Additionally, Clause (7) covers the unwinding of

recursion; for its motivation consider, e.g., the transition #x. q.a.q.b.x --_ a.q.b.px, q.a.q.b.x.

To establish the desired property (*) of _, we need to state and prove some technical lemmas. The

first two lemmas are concerned with the preservation of _ under substitution and with the preservation of

substitution by _, respectively.

LEMMA 3.4. Let P, pt, Q E _ such that pt _ p, and let y E)2. Then:

1. y is guarded in P if and only if y is guarded in pt.

2. P'[Q/y] >-P[Q/y].

Proo]. Both statements can be proved by induction on the inference length of pt _ p. The only

interesting case concerns Case (7) of Def. 3.3, where, for both parts, we can assume y _ x, since x is neither

free in P'[px.P/x] nor in #x.P. Now assume P'[px.P/x] _ #x.P due to P' _ P.

1. If there exists an unguarded occurrence of y in #x.P, then there is also one in P and, by induction,

in pt. The latter occurrence is also present after substituting #x.P for x. Otherwise, y is guarded in

#x.P, in P, and, by induction, in pt. Hence, every free occurrence of y in Pt[px.P/x] either stems

from pt and is guarded in pt, or it is in a subterm of #x.P, where it is guarded.

2. By Barendregt's Assumption, we may assume that there is no free occurrence of x in Q and, by induc-

tion, P'[Q/y] _ P[Q/y]. Hence, (P'[px.P/x])[Q/y] - (P'[Q/y])[px.(P[Q/y])/x] _ #x.(P[Q/y]) -

The other cases are straightforward and, thus, are omitted here. 0

LEMMA 3.5. Let P,Q, Qt,R • _ and x •)2 guarded in Qt such that P _ Q - Qt[px.R/x]. Then there

exists some P' • _ satis]ying P - P'[px.R/x] and P' _ Q'.

Proo]. The proof is by induction on the size of Qt, including a case analysis on the structure of Qt. The

only interesting case is Qt - #y.S for some y •)2 and S • _, where we can assume P _ Q as well as y _ x,

and that y is not free in R. Now, Q - #y.(S[px.R/x]) and P - S'[#y.S[px.R/x]/y] with S' _ S[#x.R/x].

By induction hypothesis we can write S t as S"[#x.R/x] for some S" satisfying S" _ S. We can further

write P as S"[#y.S/y][px.R/x] since y is not free in R. Finally, we may conclude this case by setting

pt _ Stt[py.S/y]. D

This second lemma will become especially important in the next section (cf. Lemma 3.15). The following

lemma relates _ to our notion of urgent action sets.

LEMMA 3.6. Let P, Q • _.

1. If x is guarded in P, then Lt(P[Q/x]) = Lt(P).

2. I] Q _ P, then Lt(Q) __Lt(P).

Proo]. The proof of Part (1) is an easy induction on the structure of P. Part (2) follows by induction

on the inference length of Q _ P. Here, one needs to use Part (1) for Case (7) of Def. 3.3; observe that x is

guarded in pt by Lemma 3.4(1).

Now we have established the machinery which we need to prove the above property (*) and, equally impor-

tant, to prove that _ is a naive faster-than relation.

PROPOSITION3.7.

1. P --_ pt implies Pt _ P, for any terms P, P_ E _.

2. The relation _ satisfies the defining clauses of a naive faster-than relation, also on open terms;

hence, _l_×_ C z

Proof. The proof of Part (1) is a straightforward induction on the length of inference of P __5+ p_. For

proving Part (2) we show that, for P_ :_ P, the three clauses in the definition of _n are satisfied. This is

done by induction on the inference length of P_ :_ P. We only consider the interesting parts for some of the

cases of Def. 3.3.

(2) P :_ a.P: Our semantics states that P -_ Pt if and only if a.P --_ P_, for some P_, thereby

implying the first two clauses in Def. 3.1. If P __5+ p_ then a.P __5+ p and P_ :_ P by Part (1).

(3) P'IQ' _ PIQ: If P'IQ' _ P_IQ', for some P_, due to P' --_ P_ (cf. Rule (Coml)), then P -_ P1

with P[:_ P1 and Q' :_ Q by induction hypothesis. Hence, P]Q _ P1]Q and P[]Q' _ P1]Q. The

other cases involving Rules (Corn2) and (Corn3) are similar.

If P']Q' __5+ p[]Q_, for some P[and Q_, due to P' --_ P[and Q' __5+ Q_ (cf. Rule (tCom)), then

p _5+ P1 and Q __5+ Q1 with P[:_ P1 and Q_ :_ Q1 by induction hypothesis. Using Lemma 3.6(2)

we conclude from P']Q' _5+ that P]Q __5+ P1]Q1 and P_]Q_I _ P1]Q1.

(7) P' [#x.P/x] _ #x.P: By Rule (Rec) any c_-transition of #x.P is of the form #x.P --_ P1 [#x.P/x], for

some P1 with P --_ P1. Then, by induction hypothesis, P_ --_ P[for some P[satisfying P[:_ P1.

Hence, P'[px.P/x] --_ P[[px.P/x] by Lemma 2.1(1) since x is guarded in P' by Lemma 3.4(1), and

we obtain P[[px.P/x] _ Pl[pX.P/x] by Lemma 3.4(2).

On the other hand, any a-transition of P'[px.P/x] is of the form P'[px.P/x] --_ P[[px.P/x] for

some P[, where P' --_ P[' for some P[' • _ such that P[[px.P/x] - P['[px.P/x] by Lemma 2.1(2),

since x is guarded in Pt by Lemma 3.4(1). Thus, by induction hypothesis, P --_ P1 with P[_ :_ P1,

as well as #x.P _ Pl[pX.P/x] and P[[px.P/x] - P['[px.P/x] _ Pl[pX.P/x] by Lemma 3.4(2).

The treatment of clock transitions is analogous.

The other parts are easier to prove and, therefore, are omitted. [_

We are now able to state and prove our first main result.

THEOREM 3.8 (Coincidence I). The preorders _n and 9,_d coincide.

Proof. Clearly, any naive faster-than relation, including :_lw×w according to Prop. 3.7(2), is a delayed

one. Thus, it suffices to show that the largest delayed faster-than relation 7_ is a naive faster-than relation.

Hence, consider some arbitrary terms P and Q such that P 7_ Q.

If P __5+ p, for some process P', then we have Q - Q0 __5+ Q1 __5+ ... __5+ Qn and P'7_Qn, for some

n _ 1 and some processes Q0, Q1,... ,Q_. By Prop. 3.7(1) we get Q_ :_ ... :_ Q1 :_ Q. Since :_lw×w c_ 7_

(see above) and since 7_ is transitive, we conclude P_7_ Q.

If P --_ P' for some process P' and some action a, then we have Q - Q0 __5+ Q1 --_ "'" __5+ Q_-I -_

QIn_ 1 -f-_* Q' and P'7_ Q', for some n _ 1 and some processes Q0, Q1,... , ' Q'.Qn-1, Qn-1, Hence, we may

conclude PI72_Q_n_l in analogy to the previous case. Since Qn-1 _ "'" _ Q0 by Prop. 3.7(1), we infer by

repeated application of Prop. 3.7(2) that Qi --_ Q_, for 0 _ i _ n - 1, such that Q_-I :_ "'" :_ Q_ - Q".

As above, this implies P_7_ Q" and Q --_ Q".

The case Q --_ Q_, for some process P_ and some action a, is obvious.

Thiscoincidenceresultjustifiesourpreferenceof thesimpleandtechnicallymoreelegantnaivefaster-than
preorder_n over the probably more intuitive delayed faster-than preorder _d" Nevertheless, _d could

in practice be more useful since there exist delayed faster-than relations which are not naive faster-than

relations, such as the relation {(a.0, ai.a.aJ.0), (a.0, a.aJ.0), (0, 0)}, for i,j E N with i > 0. Note that this

refers to the relations which define the preorders, and not to the preorders themselves.

3.2. Question II. We now turn to a second question which might be raised regarding the definition

of the naive faster-than preorder _n" Should one add a fourth clause to the definition of _n that permits,

but not requires, the faster process P to match a clock transition of the slower process Q? More precisely,

P might be able to do whatever Q can do after a time step, or P might itself have to perform a time step

in order to match Q. Hence, a candidate for a fourth clause is

(4) Q --_ Q' implies (P, Q') E 7_ or 3P'. P --_ P' and (P', Q') E 7_.

Unfortunately, this requirement is not as sensible as it might appear at first sight. Consider the processes

P =dr an.a.0 Ia.0 I_.0 and Q =dr an.a.0 I a_.a.0 I_.0, for n _ 1. Obviously, we expect P to be faster than Q.

However, Q can engage in a clock transition to Qt =dr a_-l.a.0 I a_-l.a.0 I_.0. According to Clause (4) and

since P-_, we would require P to be faster than Qq This conclusion, however, should obviously be deemed

wrong according to our intuition of "faster than."

The point of this example is that process P, which is in some components faster than Q, cannot mimic

a clock transition of Q with a matching clock transition. However, since P is equally fast in the other

components, it cannot simply leave out the time step. The solution to this situation is to remember within

the relation 7_ how many clock transitions P missed out and, in addition, to allow P to perform these clock

transitions later. Thus, the computation Q --_ a.Ola.OI_.O --% O la.OI_.O --_ 0 1o I_.O of Q, where we

have no clock transitions between the two action transitions labeled by a, can be matched by P with the

computation P --_ an.a.0 10 I_.0 --_ a.0 10 I_.0 -_ 0 10I_.0. This matching is intuitively correct, since

the first a occurs faster in the considered trace of P than in the trace of Q, while the second a occurs at the

same absolute time measured from the system start; only the time relative to the first a is greater for P.

Observe that this example also testifies to the need to remember arbitrary large numbers of time steps, as

n _ 1 is finite but arbitrary. We formalize the above ideas in the following definition.

DEFINITION 3.9 (Family of faster-than preorders). A family (7_i)icN of relations in P x P, indexed by

natural numbers (including 0), is a family of indexed-faster-than relations if the following conditions hold

for all i E N, (P, Q) E 7_i, and a E ,4.

1. P --_ P' implies 3Q'. Q --_ Q' and (P', Q') E 7_i.

2. Q _ Q' implies 3P'. P --_ P' and (P', Q') E 7_i.

3. P -2-+ P' implies (a) 3Q'. Q --_ Q' and (P', Q') E 7_i, or (b) i > 0 and (P', Q) E 7_i-1.

3. Q --_ Q' implies (a) 3P'. P --_ P' and (P', Q') E 7_i, or (b) (P, Q') E 7_i+1.

We write P _i Q if (P, Q) E 7_i for some family of indexed-faster-than relations (7_i)i_.

Intuitively, P _i Q means that process P is faster than process Q provided that P may delay up to i additional

clock ticks which Q does not need to match. Observe that there exists a family of largest indexed-faster-than

relations, but it is not clear that these relations are transitive. We establish, however, a stronger result by

showing that our naive faster-than preorder _n coincides with _0" The proof of this result uses a family of

purely syntactic relations _i, for i E N, similar to relation _ in Def. 3.3.

A A

DEFINITION 3.10. The relations _i C_ 7) × 7), for i E N, are defined as the smallest relations satisfying

the following properties, for all P,P',Q,Q',P1,... ,P_ E _ and i,j E N.

Always:

P1 _- P'2 _- "'" _- Pn implies:

pt _-i P and Qt _-i Q implies:

P_ _-i P and x is guarded in P implies:

P_ _-i P and x is guarded in P_ implies:

(1) P :_i P

(2a) P1 >i -J.P_

(2b) a.P' :_i+l P

(3) P'IQ' _i PIQ

(5) P'\L>iP\L

(7a) P'[px. P/x] _i #x. P

(75) #x. P' _i P[px. P'/x]

(4) P' + Q' >i P + Q

(6) P'[f] >_i P[f]

Observe that Clauses (7a) and (7b) deal with an unwinding of recursion on both sides of _-i. This is related

to our aim to match clock transitions from both sides of T_i. Similarly, we allow the addition of a on

both sides of _-i in Clauses (2a) and (2b) and also in more general situations than in Def. 3.3. The next

lemma compares the relations _-i, for all i E N, to the relation _-; it also compares the relations _-i among

themselves.

LEMMA 3.11.

1. _*-iC_ _*-i+l, for all i E N.

2. _ C__o ; in particular, P __5+ p_ implies P_ _o P, for any P, P_ E _.

3. P' _ P (whence, P __5+ p,) implies P _i P', for all i > O, and for any P, P' E _.

Proof. For Part (1) consider P :_i Q and show P :_i+1 Q by induction on the inference of P :_i Q. The

proof of Part (2) is analogous; for case P :_ a.P recall that P :_ P and, hence, P :_0 a.P. Also the proof of

Part (3) is analogous; for case P :_ a.P use P :_i-1 P which implies a.P :_i P. For the latter, the premise

i > 0 is needed. Finally, observe that Clause 3.3(7) is matched by Clause 3.10(7b). D

This lemma states some useful facts about our syntactic relations. In particular, Part (3) compares)_-1

with :_i, for i > 0. We need, however, five more technical lemmas before we can prove our second coincidence

theorem. The first one of these is the analogue of Lemma 3.4.

LEMMA 3.12. Let P,P',Q E _ such that P' _i P, and let y E F.

1. y is guarded in P if and only if y is guarded in P_.

2. P'[Q/y] >_i P[Q/y].

Proof. The proof is similar to the one of Lemma 3.4. In case P1 _i aJ.P_ (cf. Rule 3.10(2a)), use

Lemma 3.4(2) to obtain PI[Q/y] _ "" _ P_[Q/y]. [1

The second lemma states that _0 is reflexive and that the relations _i only relate functionally equivalent

terms, in the sense of strong bisimulation.

LEMMA 3.13. Let P, Q,R E _ such that P _i Q, and let a E ,4. Then:

1. R_oR.

2. P --2-+ P' implies SQ'. Q -_ Q' and P' _-i Q'.

3. Q -_ Q_ implies SP _.P -_ P_ and P_ _-i Q_.

Proof. While the proof of Part (1) is obvious, the ones for Parts (2) and (3) are similar to the "functional"

part of Prop. 3.7(2). In Case (2a) we use that a j.P_ -_ P_ if and only if P_ -_ P_ if and only if P1 -_ P[

10

with P[_ ... _ P_, where the latter is inferred by Prop. 3.7(2). In Case (2b) we exploit the property

_i C__i+1 of Lemma 3.11(1). Moreover, the proof for Case (7) is analogous to the one of Prop. 3.7(2) when

using Lemma 3.12 instead of Lemma 3.4. [_

The third lemma builds a bridge between relation _0 and urgent action sets.

LEMMA 3.14. Q _o P implies Lt(Q) 2 Lt(P), for any P,Q E _.

Proof. The proof is by induction on the inference length of Q _0 P. For Clause (2a) use Lemma 3.6(2)

if j = 0. Observe that Clause (2b) does not apply. For Clause (7), employ Lemmas 3.6(1) and 3.12(1). D

The fourth lemma just serves as a prerequisite for proving the fifth lemma.

LEMMA 3.15. If P1,P'2,... ,Pn E _ for some n E N such that P1 _ P2 _ "'" _ P_, and if P_ --_ P'

for some P' E _, then P1 _i P', for all i > O.

Proof. The proof is by induction on the structure of P_. We may assume that all Pi are different

and, by Lemma 3.11(3), that n > 1. First observe that P_ cannot be of the form x or T.P. If P_ is 0

or of the form a.P, we have pt _ p_ and are done by Clause 3.10(2a) with j = 0. If P_ is e.P, then

P1 _ "'" _ P_-I - P - Pt, and we are done by Clauses 3.10(2a) or (1). The other cases are quite

straightforward, except for P_ - #x.Q. Here, P_-I - Q_-l[pX.Q/x] with Q_-I _ Q; by Lemma 3.4(1), x is

guarded in Qtn_ 1 since it is guarded in Q. By repeated application of Lemmas 3.5 and 3.4(1), we conclude

that each Pi, for 1 (i (n- 1, is of the form Q_[px.Q/x] and such that Q_ _... _ Q_-I. Furthermore, we

have P' - Q_[px.Q/x] with Q --_ Q_. Now we may apply the induction hypothesis to the Qi's to obtain

Q_ _i Q_, which implies P1 -- Qtl[#X.Q/x] _i Qtn[#x.Q/x] =- P' by Lemma 3.12(2). [7

Finally, the fifth lemma establishes properties similar to those stated in Clauses (3) and (4) of Def. 3.9.

LEMMA 3.16. Let P _i Q for some P,Q E _.

1. P --_ P_ implies

* either: i = 0 and 3Q'. Q --_ Q' and P' _i Q',

* or: i > 0 and P_ _i-1 Q.

2. Q --_ Q' implies P _i+1 Q'.

Proof. Both parts are proved by induction on the inference length of P _i Q. We only consider the

more interesting cases here.

* Part 1:

(1) For i > 0, the time step P --_ P' implies P' _j Q - P, for all j, by Lemmas 3.11(1) and (2).

(2a) For i > 0, the time step P1 --_ P0 implies P0 _ P1 _ "'" _ P_; hence, Po _i-1 eJ.P_. For

i = 0 and j > 0, the same argument shows Po _i aJ-l.pn, where eJ.P_ --_ aJ-l.pn . For

i = j = 0, by repeated application of Prop. 3.7, P1 --_ /_[implies P_ --_ P_ for some P_

satisfying P[_ ... _ P_
n"

(2b) Observe that e.P _ --_ Pt and P_ _i P by the assumption of Def. 3.10(2b) and that i + 1 > 0.

The remaining cases are straightforward for i > 0. In case of Clause (7) we only have to consider

transitions of the form P'[px.P/x] --_ P"[px.P/x] (by Lemma 2.1) or #x.P' --_ P"[px.P'/x],

where P" _i-1 P by induction hypothesis. Then, we are done by employing Lemma 3.12(2) for

Clause (7b). Finally, let us consider the case i = 0. This is largely analogous using Lemma 3.12(2)

when dealing with Clauses (7a) and (7b). For Clause (3), apply Lemma 3.14 to deduce that the

right-hand side can engage in a time step.

11

* Part2:
(1) P --5+ P' implies P _-i_-i P' by Lemma 3.11(3).

(2a) Use Lemma 3.15 in case j = 0.

(7) In case of Rule (7a), employ similar arguments as above using Lemma 3.12(2).

This completes the proof of Lemma 3.16. D

Using the above lemmas we can now proof the main result of this section.

THEOREM 3.17 (Coincidence II). The preorders _ and _o coincide.

Proof. Let 7_icN be a family of faster-than relations. Then, according to Def. 3.9, 7_0 is a naive faster-

than relation, whence _0 C_ _n" For the reverse inclusion consider the largest naive faster-than relation 7_

and define a family of 7_i, for i E N, by

R T_i Q if 3P. R T_ P _ i Q.

We check that these 7_i satisfy Def. 3.9. Consider R 7_ P :_i Q.

1. IfR --_ R', then P --_ P' with R'7_P' by the definition of T_, as well as Q --_ Q' with P' :_i Q'

by Lemma 3.13(2).

2. The case Q --_ Q' is analogous and uses Lemma 3.13(3).

3. IfR -5+ R', then P --_ P' with R'7_P'. Now, Lemma 3.16(1) shows Q --_ Q' with R'7_oQ', for

i = 0, and R' 7_i-1 Q, otherwise.

4. If Q --_ Q', then P :_i+l Q' by Lemma 3.16(2). Thus, RT_i+IQ'.

This finishes the proof, since Lemma 3.13(1) implies 7_ C_7_0 [7

Summarizing, we hope to have convinced the reader that our naive faster-than preorder is a sensible candidate

for a faster-than preorder, as it coincides with two other candidates which seem to be at least equally

appealing but are technically not as simple.

4. Semantic Theory of our Faster-than Relation. This section focuses (i) on developing a fully-

abstract precongruence based on our naive faster-than preorder, (ii) on establishing its semantic theory, and

(iii) on introducing a corresponding "weak" variant which abstracts from internal, unobservable actions.

4.1. A Fully-abstract Faster-than Relation. A shortcoming of the naive faster-than preorder z_n'

as introduced above, is that it is not compositional. As an example, consider the processes P =dr a.a.0

and Q =dr a.0, for which P _n Q holds according to Def. 3.1. Intuitively, however, this should not be the

case, as we expect P - a.Q to be strictly slower than Q. Technically, if we compose P and Q in parallel

with process R =dr _.0, then PIR -5+ a.01_.0 , but QIR-_, since any clock transition of QIR is preempted

due to _- E Lt(QIR). Hence, PIR _n QI R, i.e., _n is not a precongruence.

The reason for P and Q being equally fast according to _n lies in our SOS-rules: we allow Q to delay

arbitrarily, since this might be necessary in a context where no communication on a is possible; thus, an

additional potential delay as in P makes no difference; in fact, P and Q have exactly the same transitions.

As R shows, we have to take a refined view once we fix a context, and the example indicates that, in order

to find the largest precongruence contained in _n' we have to take the urgent action sets of processes into

account. The preorder _, which repairs the precongruence defect of _n' is defined as follows. According

to _ we generally have that P is strictly faster than a.P, which is to be expected intuitively.

12

DEFINITION4.1 (Strongfaster-thanprecongruence).A relation 7_ C_ P × P is a strong faster-than

relation i$ the following conditions hold for all {P, Q> E 7_ and a E .4.

1. P --_ P' implies 3Q'. Q --_ Q' and {P', Q'> E 7_.

2. Q _ Q' implies 3P'. P --_ P' and {P', Q'> E 7_.

3. P --_ P' implies Lt(Q) C_Lt(P) and 3Q'. Q --_ Q' and {P', Q'> E 7_.

We write P _ Q i$ {P, Q> E 7_ for some strong faster-than relation 7_.

Again, it is easy to see that _ is a preorder, that it is contained in _n' and that _ is the largest strong faster-

than relation. Note that _, when restricted to processes, is not only a naive, but also a strong faster-than

relation according to Lemma 3.6(2) and Prop. 3.'/(2). As desired, we obtain the following full-abstraction

result.

THEOREM 4.2 (Full abstraction). The preorder _ is the largest precongruence contained in z

Proo$. We first need to establish that _ is a precongruence. This can be done in the usual fashion [26].

Indeed, when comparing our technical framework to the bisimulation approach for the timed process algebra

CSA developed in [11], which in turn extends CCS, then most cases of the compositionality proof can be

easily adapted. One exception is our clock-prefix operator in TACS, for which we need to show that P _ Q

implies a.P _ a.Q. This is obvious, however, since the initial clock transition of a.P can be matched by the

initial clock transition of a.Q and since all action transitions of a.P and a.Q are those of P and Q according

to Rule (Pre). In addition, we present the compositionality proof for parallel composition, as it involves the

rather unusual side condition regarding urgent action sets. By the definition of _, it suifices to prove that

T_ =dr {{PI R, QIR) I P _ Q, R E 7)} is a strong faster-than relation. Therefore, let {PI R, QI R) E T_.

* Action transitions: The cases PIR -_ S and QIR -_ S, for some a E .4 and S E 7), follows along

the lines of the corresponding cases in CCS [26] and, therefore, are omitted here.

* Clock transitions: Let PIR -£+ S for some S E 7). According to the only applicable Rule (tCom)

we know that (i) P -£+ P' for some P' E 7), (ii) R -£+ R _ for some R _ E 7), (iii) L/(P) ML/(R) = 0

as well as v _ L/(P) and v _ L/(R), and (iv) S - P'IR _. Since P_Q, there exists a process Q'

such that L/(Q) C_ L/(P), Q _5+ Q,, and P'_ Q'. Therefore, we may conclude QIR _5+ Q,IR _ by

Rule (tCom) since L/(Q) M L/(R) = 0, and U(QIR) -- U(Q) u U(R) c_ U(P) u U(R) -- U(PIR), by

the definition of urgent action sets and the fact that v _ L/(P), v ¢ L/(Q), and v ¢ L/(R). Moreover,

{P'[R', Q'[R'> E 7_ holds by the definition of 7_, which finishes the proof.

The proof of the compositionality of recursion requires one to introduce a notion of strong faster-than up to.

This definition and the compositionality proof itself is very similar to the one in CCS with respect to strong

bisimulation [26].

We are left with establishing that _ is the largest precongruence contained in _n" The proof is a slight

adaptation of one for CSA in [11]. As it is non-standard, it is worth presenting it in full here. From universal

algebra, it is known that the largest precongruence _n+ contained in the preorder _n exists, and that P _'_nz+ Q

if and only if VTACS contexts C[x]. C[P] _n C[Q], where a TACS context C[x] is a TACS term with one

free occurrence of the variable x and no free occurrences of other variables. Recall that, for any context C[x],

term C[P] is obtained by substituting P for x in C[x] without any (_-conversion, i.e., free variables in P

might be captured. As _ is a precongruence contained in _n' we have _ C_ "_nz+'and it remains to show

that P _ Q, for some processes P, Q E 7), whenever C[P] _"_nC[Q], for all TACS contexts C[x]. For this it

13

sufficesto considerthepreorder_a=dr{(P,Q>ICpe[P] _n CpQ[Q]). Here, CpQ[x] =dr x lHpQ and

HpQ =dr x.(e.0 + {T.(DL + alL.x) IL C_sort(P) O sort(Q))),

where DL is defined as _ct d.0. Note that HpQ is well-defined according to Lemma 2.2. The actions e

and dt and their complements are supposed to be "fresh" actions. In this section we do not exploit the

presence of the distinguished action e, but we do so when re-using the above context in the proof of Thm. 4.15.

To finish off our proof of Thm. 4.2, it is sufficient to establish the inclusion _a C_ 2, since the inclusion

z + C _na obviously holds.

We show that _ is a strong faster-than relation according to Def. 4.1. Let P, Q E P such that P _ Q,

i.e., we have Cp e [P] _n CpQ [Q] by the definition of _a" In the following we consider two cases distinguishing

whether process P performs an action transition or a clock transition. In each case the transition of P leads

to a transition of CpQ [P]. According to the definition of _n matching transitions must exist which mimic

each step. From the existence of these transitions we may conclude additional conditions which are sufficient

to establish _ as a strong faster-than relation.

• Situation 1: Let P -2-+ P' for some process P' and some action c_. According to our operational

semantics we have CpQ[P] -- PIHpQ _ P'IHpQ -- CpQ[P']. This transition can only be matched

by a corresponding transition of Q, say Q --%+ Q' for some Q'. This is even true in case a - T,

because the T-successors of HpQ have the distinguished actions dt enabled. Therefore, we have

CpQ[Q] - QIHpQ --_ Q'IHpQ -- CpQ[Q'] and CpQ[P'] _nCpQ[Q']. Because sort(P') C_ sort(P)

and sort(Q') c_ sort(Q), one can check that also Cp,Q, [P'] _n Cp,Q, [Qt] holds by construction of our

contexts C[x] (cf. a similar situation discussed in [30]). Thus, P'_aQ'. A transition Q --_ Q' can

be matched analogously.

• Situation 2: Let P --_ P' for some term P'. As illustrated in Fig. 4.1 we let CpQ[P] perform a

T-transition to PIHL, where Hi =dr DL + dL.HpQ and L =dr {cl c E (sort(P) O sort(Q)) \ L/(P)}.

Then, PIHL can perform a clock transition to P']HL according to Rule (tCom). Finally, we let P'IHL

engage in the dt-transition to P'IHpQ.

CpQ[Q] has to match the first step by a T-transition to QIHL, since only this term has the distin-

guished action dt enabled.

Now we take a closer look at the second step. We have to match a clock transition. Therefore, Q

has to perform a clock transition to some Q', and HL has to idle, i.e., QIHL --_ Q'IHL. According

to Rule (tCom), the condition Lt(Q) N Lt(HL) = O has to be satisfied. Because of the choice of L,

this implies Lt(Q) c_ Lt(P).

Finally, the last step can only be matched by the transition Q'IHL -_ Q'lHPe. Thus, CpQ[P'] --

P'IHpQ 9_n QtlHpQ -- CpQ[Q'].

Since sort(P') C_ sort(P) as well as sort(Q') c_ sort(Q), it follows in analogy to Situation (1) that

CP'Q' [P'] £n Cp, Q, [Q'], i.e., P'£aQ'.

Thus, _a is a strong faster-than relation, i.e., _a C_ n according to Def. 4.1. Hence, _'_nZ4.C_ _a C_ n which,
z+

together with the inclusion _ C_ _'_n_4- obtained earlier yields _ = _'_n , as desired. [3

We conclude this section by showing that TACS is a conservative extension of CCS [26]. As noted earlier,

we can interpret any process not containing a a-prefix as CCS process, since then all relevant semantic rules

for action transitions are the same as the ones for CCS. Moreover, for all TACS terms, we can adopt the

equivalence strong bisimulation [26], in signs _, which is defined just as _ when omitting the third clause of

14

P I HpQ 2 Q I HpQ
r_a n

P I (DL + dL.HpQ) 9,_n Q I (DL + dL.HpQ)

: 1
P'I (DL + dL.HpQ) 9,_n Qtl (DL + dL.HpQ)

1 :
P'I HpQ 2 Q'I HpQ"_n

F_G. 4.1. Largest precongruence proof: Illustration of Situation 2

Def. 4.1. Furthermore, we denote the term obtained from some term P E _ when deleting all a's by strip(P).

We may now state the following conservativity results.

THEOREM 4.3 (Conservativity). Let P, Q E 7).

1. Always P _ Q implies P _ Q.

2. If P and Q do not contain any a-prefixes, then P _ Q if and only if Q _ P if and only if P _ Q.

3. Always P _ strip(P); furthermore, P __5+ pt implies P _ Pt.

Proof. The first part is an immediate consequence of the definitions of _ and _. The second part

follows by the fact that terms without a-prefixes (i) can only make a clock transition to themselves, namely

if and only if no internal transition is enabled, and (ii) possess the same urgent actions whenever they are

related by _ or _, since any action they can perform is urgent. For the first claim of the third part,

one shows by structural induction on terms P E _ that the action transitions of strip(P) are exactly all

transitions strip(P) _ strip(P _) where P --_ P_. For the second claim of the third part, one first proves

that P __5+ p_ implies that strip(P) and strip(P _) are identical up to unfolding of recursion. Then, one

applies the first claim to finish the proof.

This result shows that our strong faster-than preorder refines the well-established notion of strong bisimu-

lation. Moreover, if no bounded delays occur in some processes, then these processes run in zero-time, and

our strong faster-than preorder coincides with strong bisimulation. In other words, the strong faster-than

preorder is thus restricted to consider the "functional" behavior of such processes only, irrespective of their

relative speeds. That the bounded delays in TACS processes do not influence any "functional" behavior, is

demonstrated in the third part of the above result.

15

TABLE4.1
Axiomatization for finite sequential processes

(A1) t + u = u +t (D1) 0If] = 0

(A2) t + (u + v) = (t + u) + v (D2) (a.t)[f] = f(a).(t[f])

(A3) t +t = t (D3) (a.t)[f] = a.(t[f])

(A4) t + 0 = t (D4) (t + u)[f] = t[f] + u[f]

(P1) a.t + T.u = t + T.u (C1) 0 \ L = 0

(P2) a.t+u.a.u = a.t+a.u (C2) (a.t)\L = 0 a•LU

(P3) t + u.t = t (C3) (a.t) \ n = a.(t \ L) a ¢ n U

(P4) a.(t + u) = a.t + a.u (C4) (a.t) \ L = a.(t \ L)

(P5) t Z u.t (C5) (t+u)\L = (t \ L) + (u \ L)

The above embedding of CCS gives the technical conservation result in Thm. 4.3(2), but this might

intuitively not be very pleasing: one might expect that the parallel execution of actions is faster than their

arbitrary sequential execution, but the result shows that processes a.OIb.O and a.b.O + b.a.O are equally

fast with respect to _. Intuitively, for things happening with no time between them, it is dimcult to

see whether they happened one after the other or together. Of course, the zero-time between a and b

is just a mathematical abstraction, but a useful one; it stands for a very short, negligible time. As an

alternative, one could follow the approach of [23] and assume that actions might take some time, and for

a uniform embedding of CCS one can give each action a bounded delay of one. Technically, this means to

embed ordinary CCS-terms into TACS by inserting a u-prefix before each action. Thm. 4.3(2) shows that

this translation does not change any "functional" behavior. With this embedding, however, the classical

expansion law "a.O I b.O = a.b.O + b.a.0" is not preserved due to timing: u.a.0 l u.b.0 is strictly faster than

u.a.u.b.O + u.b.u.a.O; consider the matching of a clock transition.

4.2. Axiomatization. In this section we provide a sound and complete axiomatization of our strong

faster-than precongruence _ for the class of finite sequential processes. According to standard terminology,

a process is called finite sequential if it does neither contain any recursion operator nor any parallel operator.

Although this class seems to be rather restrictive at first sight, it is simple and rich enough to demonstrate, by

studying axioms, how exactly our semantic theory for _ in TACS differs from the one for strong bisimulation

in CCS [26]. We refer the reader to the end of this section for a discussion on the implications when

considering to axiomatize larger classes of processes. As a notational convention we write 7)fi" for the set of--seq

all finite sequential processes, ranged over by s, t, and u.

Now, we turn to the axioms for strong faster-than precongruence which are displayed in Table 4.1, where

any axiom of the form t = u should be read as two axioms t 3_ u and u 3_ t. We write t- t 3_ u if t 3_ u

can be derived from the axioms. Axioms (A1)-(A4), (D1)-(D4), and (C1)-(C5) are exactly the ones for

strong bisimulation in CCS [26]. Hence, the semantic theory of our calculus is distinguished from the one

for strong bisimulation by the additional Axioms (P1)-(P5). Intuitively, Axiom (P1) reflects our notion of

maximal progress or urgency, namely that a process, which can engage in an internal urgent action, cannot

delay. Axiom (P2) states that, if an action occurs "urgent" and "non-urgent" in a term, then it is indeed

16

urgent, i.e., the non-urgent occurrence of the action may be transformed into an urgent one. Axiom (P3) is

similar in spirit, but cannot be derived from Axiom (P2) and the other axioms. Axiom (P4) is a standard

axiom in timed process algebras and testifies to the fact that time is a deterministic concept which does not

resolve choices. Finally, Axiom (P5) encodes our elementary intuition of a-prefixes and speed within TACS,

namely that any process t is faster than process a.t which might delay the execution of t by one clock tick.

The correctness of our axioms with respect to _ can be established as usual [26]. However, it is worth

noting that all axioms are sound for arbitrary TACS processes, not only for finite sequential ones. To prove

the completeness of our axiomatization for finite sequential processes, we introduce a notion of normal form

which is based on the following definition. A finite sequential process t is called in summation form if it is

of the shape

t - E(_i'ti [+a.t_]
iCI

where (i) I denotes a finite index set, (ii) all the ti are in summation form, (iii) the subterm in brackets is

optional and, if it exists, t_ is in summation form, and (iv) ai E .4, for all i E I. Moreover, _ is the indexed

version of +; we adopt the convention that the sum over the empty index set is identified with process O.

As expected, we obtain the following result.

7)_i" in summation form such that F- t = u.7)_i" there exists some u E --seqPROPOSITION 4.4. For any t E --seq

Proof. The proof proceeds by induction on the size of process t, i.e., the number of operators contained

in t. Please observe, for the induction base, that process 0 is trivially in summation form. For the induction

step, using Axioms (C1)-(C5) and Axioms (D1)-(D4), one can eliminate restrictions and relabelings as

usual [26]. Consequently, t is transformed into a process which is just a sum of prefixed terms. In case of

several a-prefixed terms, these can be merged into one by (repeatedly) applying Axiom (P4) and possibly

Axioms (A1) and (A2). Then, the processes trailing the prefixes can be brought into summation form

according to the induction hypothesis. The proof details are quite straightforward and, thus, are omitted in

this report. [_

In the remainder, the following definition of the set of initial actions, in which some process t in summation

form can engage in, will prove useful: :Y(t) =dr Lt(t) [U I(t_)]. It is easy to establish that :Y(t) is compatible

with our operational semantics, i.e., the equality :Y(t) = {a E ,41 t _ } holds.

DEFINITION 4.5 (Normal form). The process _iciai.ti [+ a.ta] in summation form is in normal

form if all terms ti, for i E I, are in normal form and, in case the optional term in brackets is present, the

following conditions are satisfied: (i) t_ _ 0; 5i) Vi E I. ai _ v; 5ii) Vi E I. ai _ I(t_); and 5v) term t_ is

in normal form.

Before we state the key proposition that every finite sequential process can be transformed into normal form,

we note that Conds. (ii) and (iii) exactly correspond to our abovementioned intuitions regarding Axioms (P1)

and (P2), respectively.

7)_i" in normal form such that F t = u and7)_i" there exists some u E --seqPROPOSITION 4.6. For any t E --seq,

U(t) C_U(u).

Note that, as one can check in the following proof, the set of urgent actions might increase when transforming

a process into normal form due to the application of Axiom (P1), whereas the set of initial actions cannot

change. This former inclusion is exploited in the completeness proof of our axiomatization.

17

Pro@ According to Prop. 4.4 we may assume t to be in summation form. Now, the proof is by induction

on the size of process t - _icI ai.ti [+ a.t_]. In the following, we only comment on the more interesting

proof steps and do not explicitly mention applications of Axioms (A1) and (A2). Especially, the statement of

the proposition is trivially true for the induction base t - 0. Moreover, if the optional summand a.t_ does not

exist, then one just needs to apply the induction hypothesis to normalize all ti, for i E I, and the proof is done.

Hence, we may assume that the summand a.t_ is present. If Cond. (ii) is violated, i.e., ifc_i = 7- for some i E I,

then t- t = t' =dr _iCI _i.ti+t_ by Axiom (P1). Observe that t' is in summation form, has smaller size than t,

and satisfies U(t) C_U(t'). One can now finish off this case by applying the induction hypothesis. Thus, we

may assume that Cond. (ii) holds and turn our attention to establishing Cond. (iii). We first (repeatedly) use

Axioms (A3) and (P2) and then Axiom (P4) to infer H _icI °_i'ti+a'ta = _iEI O_i'ti+a'(_iEI O_i'ti) +a'ta =

_iEI OZi'ti + a'(_iEI Ozi'ti + ta). We can now apply the induction hypothesis to process _icI °zi'ti + ta and

obtain a term t" in normal form satisfying H _icI °zi'ti + ta = t II and Lt(_ic I ozi.t i + ta) C U(tll). From

A tllthis inclusion, it is easy to see that term t" can be written as _kcK Yk. k + _jCJ 9j.ty [+ a.t"], for
some index sets K and J, such that {c_i]i E I} = {Tk]k E K} and {Tk]k E K} N {/_j]j E J} = 0. This

/3" t" [+ a.t_]). By applying the above transformation backwards, i.e., by employingimplies (*) c_i ¢ I(_jc J j. j
v-_ tl I II IIAxioms (P2) and (P4), we infer H t = EicI c_i.ti + ?-_kcK _/k. k + a'(EjCJ/3j.tj [+ a.t_]). The latter term

satisfies Cond. (iii) due to property (*) and still satisfies Cond. (ii), too. By induction we can normalize the

processes ti, for i E I, while EjcJ Zj.ty [+ a.t"] and the tg are in normal form since t" is. Finally, in case

" [+ a.t_] -- 0, we can eliminate the subterm a.(Ej j Zj.ty [+ a.t"]) since H 0 = 0+a.0 = a.0Ej j j.tj
by Axioms (P3) and (A4). This establishes Cond. (i), and we are done. [3

Before we can proceed to our completeness theorem, we need to state a technical lemma.

LEMMA 4.7. Let t -- _iciai.ti [+ a.t_] and u - _jcj /3y.uy [+ a.u_] be processes in normal]orm

such that t £ u. Moreover, let B C_{ /3y] j E J }.

1. {/3j]j E J} C_ {ai]i E I}.

2. _{iEIIa_EB } OZi.ti _ _{jEjI_3jEB} /_j.Uj.

3. Always _{iEi]a_B} OZi.ti [+ a.ta] _ _{jEj]j3j_B}/_j.Uj [+ a.Ua].

Proo].

* Part (1): If ai -- r for some i E I, then the summand a.t_ does not exist and the claim follows from

Def. 4.1(2). Otherwise, t can engage in a a-transition, whence the claim coincides with Ll(u) C_Ll(t)

which follows from Def. 4.1(3).

We are proving the other two statements separately and proceed along the case distinction explicit in the

definition of z

* Part (2): If the right-hand side can engage in an action transition, say E{jEJ]13jEB} /_j.Uj -_ Uj,,

then u _ uj, and t -_-+, by the definition of _. Since B C_{hi l i E I} by (1), we have/3j, - hi,, for

some i' E I, such that t_-_ by Cond. (iii) of normal forms. Hence, _{icIl_B} ai.ti 22# t¢ and

t¢ _ uj,. The case where the left-hand side engages in an action transition is analogous. Moreover,

it is easy to see that both sides have the same sets of urgent actions and, if r is not among these

actions, then both terms can idle on a.

* Part (3): The proof of this part is by induction on the size of process u. Since the induction base,

i.e., u - 0, is trivial, we only focus on the induction step.

18

If the leR-handside_{icIl_B} (_i.ti [+ _r.t_] canengagein anc_i,-transition to ti,, for some

ai, _ B, then so can t. Since ai, _ B, the matching ai,-transition of u, according to the definition

of _, also exists for the right-hand side _{jcgl_j_B}/3j.uj [+ _r.u_]. A /3j,-transition of the

right-hand side, for j' E {j E J I/3j _ B}, can be treated analogously.

If the leR-hand side can engage in an a-transition to some term t" due to _r.t_ ___E+t" for some

a E A, then t __Z+t" and a _ B by (1) and Cond. (iii) of normal forms. Hence, the right-hand side

can match this transition in the same way as u does according to the definition of _. A/3-transition

!
' for some action/3 and some term u_, can be dealt withof the right-hand side, due to a.u_ Z__ u_

in an analogous fashion.

It remains to consider the case _{icIl_B} ai.ti [+ _r.t_] __Z+_{icIl_B} ai.ti [+ t_]. If r E B,

then none of the optional summands exists, and _{icII _, _B} ai.ti and _{Jcgl_j _B}/3i.uj can idle

just as t and u can. If r _ B, then t __E+ _ic_ ai.t_ [+ t¢] and, according to the definition of

and our operational rules: (a) u __E+ Ejcg/3j.uj [+ u_], whence E{jcJI_j_B}/3j.uj [+ _r.u_] -%

E{jcgl_j_tB}/3j.uj [+ u_]; (b) gt(u) C_ gt(t) which implies gt(E{jcgl_j_tB}/3j.u j [+a.u_]) =

gt(u)\B C_gt(t)\B = gt(G{icil_B}ai.ti [÷ _r.t_]); (c) Giciai.ti [÷ t_]2 Gjcj/3j.uj [÷ u_].

Since the processes in (c) are again in normal form, one can apply the induction hypothesis to obtain

_{iczl_B} ai.ti [+ t_]_ _{jej IZ_B}/3j.uj [+ u_], as desired. Note that the urgent actions

of t_ and u_ cannot be in B.

This completes the proof of Lemma 4.7. 0

The next lemma essentially states the desired completeness result for specific finite sequential processes,

namely those whose corresponding normal forms do not contain the optional a-summand.

LEMMA 4.8. Let t -- _ie_ ai.ti and u - _jej /3j.uj be in normal form such that t _ u. Then, _- t 3_ u.

Proof. The proof is done by induction on the sum of the process sizes of t and u. For the induction base

we have t - u - 0; hence, t- 0 3_ 0 trivially holds. In the induction step we reason as follows. According to

the definition of _, there exists for each i' E I some j' E J such that ai, =/3j, and ti,_uj,. By induction

hypothesis we may conclude t- ti, 3_ uj, , whence _- ai,.ti, + _jej /3j.uj 3_/3j, .uj, + _jej /3j.uj = _jej /3j.uj

by Axiom (A3) and possibly Axioms (A1) and (A2). By repeating this reasoning for each i E I, we obtain

_- _iez ai.ti + _jej/3j.uj = t + u 3_ u = _jej/3j.uj. Analogously, we can infer t- t 3_ t + u. Hence, t- t 3_ u

by transitivity, r]

Finally, we are able to state and prove the main result of this section.

THEOREM 4.9 (Correctness &: completeness). For finite sequential processes t and u we have: _- t 3_ u

if and only if t _ u.

Proof. The correctness "_" of our axiom system follows by induction on the length of the inference

_- t 3 u, as usual; we leave it as an exercise to the reader to show that indeed 3 may be safely replaced by

in each axiom. Thus, we are leR with proving completeness "_". By Prop. 4.6 we may assume that the

processes t and u are in normal form. If neither t nor u possesses an optional a-summand, we are done by

Lemma 4.8. Otherwise, we proceed by induction on the sum of the process sizes of t and u as follows.

We first apply Lemma 4.7(2) to t - _i_ (_i.ti [+ a.t_], u -- EjEJ/3j'uj [÷ a.U a], and B = {/3j IJ • J},

which yields _{i_ I _ _B} (_i.ti _ _{j_g IZ__B}/3j'uj" As at least one of t_ and u_ is missing, we may apply

the induction hypothesis to conclude _- _{i_I_B} (_i.ti 3_ _{j_JlZj_B}/3j.uj.

19

Furthermore,by Lemma4.7(3),E{icil_,_B} ai.ti [+ a.t_] _ 0 [+ a.u_]. If B ¢ _, one can apply

the induction hypothesis to conclude that this relation is also derivable in our axiom system, and we are

done. Otherwise, both t and u possess a a-transition, which yields _icI ai.ti [+ t_] _ u_ by the definition

of _, with u_ - 0 if the summand a.u_ is absent. According to the induction hypothesis (observe that at

least one a is missing when compared to t and u) we obtain F- _icI ai.ti [+ a.t_] Z u_. Hence, we may

conclude F- _iciozi.ti [-4- a.tcr] Z a.(_iciozi.ti) [-4- a.tcr] Z a.(_iciOZi.ti [-4- tcr]) Z O'.Ucr Z 0 [-_- O'.Ucr]

by Axioms (P5), (P4), and (A4), by the above, and by the fact F- 0 + a.0 = 0. rl

It is very desirable to extend our axiomatization to cover parallel composition, too, but this is non-trivial

and still an open problem. As already mentioned, a.a.Ola.b.O is strictly faster than a.a.a.b.O + a.b.a.a.O;

but since a is synchronized, a more sensible expansion law would try to equate ma.Olmb.O with m(a.Olb.O).

Unfortunately, this law does not hold, since the latter process can engage in an a-transition to 0 1b.0 and

is therefore strictly faster. Thus, our situation is the same as in Moller and ToRs' paper [29] which also

considers a bisimulation-type faster-than relation for asynchronous processes, but which deals with best-

case rather than worst-case timing behavior. It turns out that the axioms for the sequential sub-calculus

given in [29] are all true in our setting; however, we have the additional Axioms (P1) and (P2) which both

are valid since a is just a potential delay that can occur in certain contexts. Also Moller and ToRs do not

treat parallel composition completely, just some expansion-like inequalities are listed. Once we know how

parallel composition can be dealt with, extending our axiomatization to regular sequential processes, i.e.,

the class of finite-state sequential processes that do not contain restriction and relabeling operators inside

recursion, can be done by adapting Milner's technique for uniquely characterizing recursive processes by

systems of equations in normal form [25].

4.3. Abstracting from Internal Computation. The strong faster-than precongruence introduced

in Sec. 4.1 is too discriminating for verifying systems in practice. It requires that two systems have to

match each others action transitions exactly, even those labeled with the internal action T. Consequently,

one would like to abstract from T's and develop a faster-than precongruence from the point of view of an

external observer. As our algebra is a derivative of CCS, our approach closely follows the lines of [26].

We start off with the definition of a naive weak faster-than preorder which requires us to introduce the

following auxiliary notations. For any action c_, we define & =dr e, if c_ = T, and & =dr C_,otherwise. Further,

we let _ =df --_"}* and write P _ Q if there exist R and S such that P _ R _ S _ Q.

DEFINITION 4.10 (Naive weak faster-than preorder). A relation 7_ C_7) x 7) is a naive weak faster-than

relation if the following conditions hold for all (P, Q) • 7_ and c_ • .4.
^

1. P --_ P' implies 3Q'. Q _ Q' and (P', Q') • 7_.
^

2. Q --_ Q' implies 3P'. P _ P' and (P', Q') • 7_.

3. P --_ P' implies 3Q', Q", Q'". Q _ Q" --_ Q"' _ Q' and (P', Q') • 7_.

We write P _Q if (P, Q) • 7_ for some naive weak faster-than relation 7_.

Since no urgent action sets are considered, it is easy to see that _n is not a precongruence. To get closer

to our goal to define an observational faster-than precongruence, we re-define the third clause of the above

definition; please note the analogy to the third clause of Def. 4.1.

DEFINITION 4.11 (Weak faster-than preorder). A relation 7_ C_7) x 7) is a weak faster-than relation if

the following conditions hold for all (P, Q) • 7_ and c_ • .4.

20

^

1. P --% P' implies 3Q'. O _ O' and {P', O'} E T_.
^

2. O --% O' implies 3P'. P _ P' and {P', O'} E T_.

3. P --_ P' implies 3Q', O", O"'. O _ O" -24 O'" _ O', Lt(O") c_ Lt(P), and {P', O'} E T_.

We write P s O if {P, Q} E T_ for some weak faster-than relation T_.

From this definition we may conclude that s is the largest weak faster-than relation and that s is a preorder.

In addition, the following proposition holds.

PROPOSITION 4.12. The relation s is a precongruence for all operators except summation. Moreover,

_ is characterized as the largest such precongruence contained in __.

Proof. In the following we prove the precongruence property, i.e., we show that _ is compositional with

respect to action prefixing, clock prefixing, parallel composition, restriction, relabeling, and recursion. Most

cases are standard and can be checked along the lines of [26]. The case of clock prefixing is also easy and

quite similar to the "strong" case. Therefore, we restrict ourselves to the case of parallel composition. For

this proof, the following property turns out to be useful. Let P, pt, O E P such that P _ Pt. Then

PIQ _ P'IQ and QIP _ QIP'

This property can be proved by induction on the "length" of the weak transition P _ P_.

compositionality proof regarding parallel composition, it is by Def. 4.11 sufficient to establish that

T_ =dr { (PIR, QIR) I P _ Q, R E P}

is a weak faster-than relation. Let (PIR, QIR} be an arbitrary pair in T_.

(4.1)

For the

Action transitions: The cases where PIR --% S and QIR --% S, for some S E P and a E A are

standard.

• Clock transitions: Let PIR -24 S for some S E P. By the only applicable Rule (tCom) we know

that (i) P -24 P' for some P' E P, (ii) R --_ R' for some R' E P, (iii) L/(P) M L/(R) = 0 as well as

_- _ L/(P) and _- _ L/(R), and (iv) S - P'IR'. Since P s Q, there exist terms Q', Q", Q"' E P such

that Q _ Q" -24 Q'" _ Q', L/(Q") c L/(P), and P' s Q,. First, observe that L/(Q") M L/(R) C

L/(P) ML/(R) = 0 and that _- _ L/(Q"). Applying Property (4.1) and Rule (tCom) again, we conclude

QIR _ Q"IR -24 Q"'IR' _ Q'IR'. Moreover, L/(Q"IR) = L/(Q") u L/(R) C_ L/(P) U L/(R) =

L/(PIR), since _- ¢ L/(Q't), _- ¢ L/(P), and _- _ L/(R). Finally, {P'IR', O'l R'} E 7_ holds due to the

definition of 7_, which completes this proof part.

To conclude this part of the proof, we want to remark that, in order to show s to be compositional with

respect to recursion, we need to define a notion of weak faster-than preorder up to s (cf. [33]), which can be

done in the obvious fashion. Then, the proof is similar to the corresponding one in [26].

We are left with establishing the "largest" claim. From universal algebra we know that the largest

precongruence s n --for all operators except summation-- contained in _z n exists. Since s is such a pre-

congruence, the inclusion _ C _- holds. Thus, it remains to show _- C _. Consider the relation
-- _n _n --

_,-_aZ :df {(P,Q) ICPQ[P] _z n CpQ [Q] }, where the terms CpQ Ix] are defined as in the proof of Thm. 4.2. Since x

is simply put in parallel with process HpQ in CpQ[x], we have that P _,-_nZ--Q implies CpQ [P] _sn CpQ[Q] and

CpQ[P] _z n CpQ[Q]; we conclude that _sn C_ _a" The other necessary inclusion, _a C_ _,s is established by

proving that _ is a weak faster-than relation. Let P, Q E 7) such that P _ Q, and consider the following

two situations.

21

• Situation 1: Let P __5+ p, for some P' E 7) and some c_ E .4. According to our operational semantics

we may derive CpQ[P] - P]HpQ __5+ P']HpQ -- CpQ[P']. This transition can only be matched by a

corresponding weak transition of Q, say Q _ Q', for some Q' E 7), since only process HpQ has the

distinguished action e enabled. Therefore, we have CpQ[Q] - Q]HpQ _ Q']HpQ - CpQ[Q'] and

CpQ[P'] _n CPQ[QI] • Because sort(P') C_sort(P) and sort(Q') c_ sort(Q), also Cp,Q, [P'] Z._nCP, Q, [Qt]

holds. Thus, P' Z._a Qt. The case where Q --q-+ Q', for some Q' E 7) and some a E .4, is analogue.

• Situation 2: Let P __5+ p, for some P' E 7). As illustrated in Fig. 4.2, CpQ[P] can perform a

T-transition to P[HL, where HL =dr DL + dL.HpQ and L =dr {c[c • (sort(P) U sort(Q)) \ L/(P)}.

Then, P[HL can engage in a a-transition to P'[HL according to Rule (tCom). Finally, we consider

the step P'[HL -_ P'[HpQ.

P I HpQ 2 Q I HpQ_,_n

1 :
P I (DL + dL.HpQ) Z n Qt' I(DL + dL.HpQ)

: 1
P'] (DL + dL.HpQ) ,._2n Q,t[(DL 4- dL.HpQ)

1 :
P'] HpQ 2 Qtl HpQ_._n

F_C. 4.2. Largest precongruence proof: Illustration of Situation (2)

Let us have a look at the first step. Since CpQ [P] _n CpQ [Q], we have CpQ [Q] _ W', for some

W" • 7). We know that HpQ has to perform a T-transition to HL but cannot take part in a

communication, since e and dL are distinguished actions. However, Q may be able to perform some

T-transitions to some process Q" • 7), i.e., Q _ Q" and P[HL Z,_n Q"[HL.

Now we consider the more interesting second step. Since P[HL Z_._n Q'[HL, we know of the existence

of some W m • 7) such that Q']HL _ W m and P_]HL Z_._n Wttt. According to our operational

semantics, Q" and HL have to perform a naive temporal weak a-transition. Since HL cannot take

part in a communication (see above), it can only engage in an idling a-transition HL --if-+HL, and

we conclude W" - Qm]HL for some process Qm • 7) such that Q" _ Q", i.e., Q" _ Q_"

Q_' _ Q"' for some Q_', Q_' • 7). Then, Q"]HL _ Q_I"]HL --_ Q_']HL _ Q'"]HL must hold.

According to Rule (tCom) the condition L/(Q_') N Lt(HL) = 0 has to be satisfied in order that the

clock tick may occur. By the choice of L, this condition implies L/(Q_') C_L/(P), as desired.

22

Finally, let P'IHL -_ P'IHPQ -- CpQ[P']. Since P'IHL Z._n QmIHL , we have QmIHL _ W', for

some W' E 7). We know that HL performs its alL-transition to HpQ since e is a distinguished

action. However, Qm may engage in some T-transitions to some Q' E 7), i.e., Qm _ Q,, and

CpQ[P'] - P'IHPQ _Zn Q'IHP Q -CpQ[Q'].

We have established the existence of processes Q', Q_", Q_' E 7) such that Q _ Q_" --£4 Q_" _ Q'

and L/(Q_") c L/(P). Also Cp,Q, [P'] s ,_ , , P' _a Q'-- _,'-_n _P Q [Qq holds, i.e., since CpQ[P'] _z n CpQ[Q];

sort(P') C_sort(P), and sort(Q') c_ sort(Q).

Thus, _a is indeed a weak faster-than relation, and we are done. [3

The reason for the non-compositionality of the summation operator is similar to that with respect to obser-

vational equivalence in CCS [26]. Fortunately, the summation fix used for other bisimulation-based timed

process algebras, such as CSA [11], proves effective for TACS, too.

DEFINITION 4.13 (Weak faster-than precongruence). A relation 7_ C_ 7) x 7) is a weak faster-than

precongruence relation if the following conditions hold for all (P, Q) • 7_ and (_ • A.

1. P --_ P' implies 3Q'.Q _ Q' and P _ Q:s ,

2. Q --_ Q' implies 3P'.P _ P' and P _ Q:s ,

3. P --_ P' implies Lt(Q) c_ Lt(P), and 3Q'. Q --£4 Q' and (P', Q') • 7_.

We write P _ Q if (P, Q) • 7_ for some weak faster-than precongruence relation 7_.

We first show that _ is indeed a precongruence and also present a simple full-abstraction result.

PROPOSITION 4.14. The relation _ is the largest precongruence contained in 3

Proof. The compositionality of _ is easy to show for the cases of action and clock prefixing, restriction,

and relabeling. In the following we deal with the remaining, more interesting cases. Let P, Q, R, S • 7) be

such that P _ Q and R _ S. Then (1) PI R _ QI R and (2) P + R _ Q + R, which is established as follows.

1. According to Def. 4.13, it is sufficient to prove that the relation

7_ =dr { {P]R, Q]R)] P _ Q ; R • 7)}

is a weak faster-than precongruence relation. Let (PIR, QIR) • 7_ be arbitrary.

• Action transitions: The cases where PIR --_ S or QIR --_ S, for some S • 7) and (_ • A, are

standard.

• Clock transitions: Let PIR --_ S, for some S • 7). This case can easily be treated along the

lines of the corresponding case in the proof of the precongruence property of _.

2. By Def. 4.13 it is sufficient to establish that the relation

7_=df {(P + R,Q + R} [P_Q;R • 7)}

is a weak faster-than precongruence relation. Let (P + R, Q + R) • 7_ be arbitrary.

• Action transitions: Let P + R --_ V, for some a • ,4 and V • 7). Since the operational rules

for summation with respect to actions are identical to the ones in CCS, and the definition of

weak faster-than precongruence coincides with the one of observational congruence in CCS in

this particular case, the proof follows along the lines of the corresponding proof in CCS.

• Clock transitions: Let P+R --_ V, for some V • 7), i.e., P --_ P' and R --_ R' for

some P',R' • 7), and V - P' + R' by Rule (tSum). Since P_ Q we know of the existence of

23

someQ' • P such that Q --_ Q', b/(Q) c_ Lt(P), and P'_ Q'. Therefore, we may conclude

Q + R --_ Q' + R' by Rule (tSum), as well as (P' + R', Q' + R'} • T_ by the definition of T_.

Moreover, we have b/(Q + R) = b/(Q) u Lt(R) C_Lt(P) U Lt(R) = Lt(P + R) by the definition of

urgent action sets, which finishes this part of the proof.

To show that _ is compositional with respect to recursion, we have to adapt a notion of "up to" again.

A relation T_ C_P × P is a weak faster-than precongruence relation up to _ if the following

conditions hold for every (P, Q} • T_ and a • A.

1. P _5+ p, implies BQ'. Q _ Q' and P' T_ _ Q', and

2. Q __5+ Qt implies 3Pt. P _ P_ and P_ _T_ Q_, and

3. P __5+ p, implies BQ'.Q _5+ Q,, N(Q) c_ N(P), and P' T_ Q'.

The proof follows pretty much the standard lines (cf. [26]) and, therefore, is omitted here.

We are left with establishing the "largest" claim. From universal algebra we know that the largest

precongruence 3+ in 3 exists and also that 3+_ _ = {(P, Q) I VC[x]. C[P] _ C[Q]}. Since _ is a precongruence

s + c- s Consider thewhich is contained in s the inclusion s c- s + holds. Thus, it remains to show _ - _.

relation ____Za =df {(P, Q}I P + c.0 _s Q + c.0, where c _ sort(P) U sort(Q)}. By definition of _a we have

_+ C- _a" We establish the other necessary inclusion _a C_ __ by proving that _ is a weak faster-than

precongruence relation. Let P _ Q, i.e., P + c.0 _s Q + c.0, and distinguish the following cases.

• Action transitions: Let P --% P_, i.e., a _ c and P + c.0 --% Pt by Rule (Sum1). Since P _a Q
^

we conclude the existence of some V • P satisfying Q + c.0 _ V and P_ s V. Because c is a

distinguished action we have V _ Q and, thus, V - Q_ and Q _ Q_, for some Q_ • 7).

• Clock transitions: Let P -_ Pt. By Rules (tAct) and (tSum), P + c.0 --_ P_ + c.0 holds. Since

P_Q we know of the existence of some V, V _, V" • 7) such that Q + c.0 _ V t --_ V" _ V,

L/(V _) C_ L/(P), and P_ + c.0 _ V. Because c is a distinguished action not in the sorts of P

and Q, we conclude V' - Q + c.0, V" - Q' + c.0 for some Q' • 7), V - V", Q --_ Q', and

L/(Q) c L/(P). Moreover, P' _a Q' by the definition of _a and the fact that sort(P') C sort(P) and

sort(Q') c_ sort(Q).

This shows that _ is a weak faster-than precongruence relation. Hence, _ C_ _, as desired. [3

Now we are able to state the main theorem of this section.

THEOREM 4.15 (Full-abstraction). The relation _ is the largest precongruence contained in _n"

Proof. The claim follows from a general result established in universal algebra since (1) 3 is the largest

precongruence --for all operators except summation-- contained in _3n (cf. Prop. 4.12) and since (2) __ is

the largest precongruence --for all operators including summation-- contained in _ (cf. Prop. 4.14). [3

5. Example. We demonstrate the utility of our semantic theory for TACS by means of a small example

dealing with two implementations of a 2-place storage in terms of an array and a buffer, respectively. Both

can be defined using some definition of a 1-place buffer, e.g., Be =dr #x.a.in.out.x, which can alternately

engage in communications with the environment on channels in and out [26]. Observe that we assume a

communication on channel out to be urgent, while process Be may autonomously delay a communication

on channel in by one clock tick (cf. the single clock-prefix in front of action in). Finally, subscript e of

process Be should indicate that the 1-place buffer is initially empty. On the basis of Be, one may now define

24

zBe IBe_

BfB_

F_G. 5.1. Semantics of the array variant (left) and the buffer variant (right).

a 2-place array 2ARR and a 2-place buffer 2BUF as follows:

2ARR =df Be I Be and 2BUF =df (Be[c/out]lBe[c/in]) \ {c}.

While 2ARR is simply the (independent) parallel composition of two 1-place buffers, 2BUF is constructed

by sequencing two 1-place buffers, i.e., by taking the output of the first 1-place buffer to be the input of

the second one (cf. the auxiliary internal channel c). Intuitively, we expect the array to behave functionally

identical to the buffer, i.e., both should alternate between in and out actions. However, 2ARR should be

faster than 2BUF since it can always output some of its contents immediately. In contrast, 2BUF needs to

pass any item from the first to the second buffer cell, before it can output the item.

The semantics of the 2-place array 2ARR and our 2-place buffer 2BUF are depicted in Fig. 5.1 on the

left and right, respectively. For notational convenience, we let B_ stand for the process in.out.Be and Bf for

out.Be. Moreover, we leave out the restriction operator \{c} in the terms depicted for the buffer variant. The

highlighted T-transition indicates an urgent internal step of the buffer. Hence, process (BrIBe) \ {c} cannot

engage in a clock transition. The other T-transition depicted in Fig. 5.1 is non-urgent. As desired, our

semantic theory for TACS relates 2ARR and 2BUF. Formally, this may be witnessed by the weak faster-than

relation given in Table 5.1. It is easy to check, by employing Def. 4.11, that this relation is indeed a weak

faster-than preorder, whence 2ARR Z 2BUF. Moreover, since both 2ARR and 2BUF does not possess any

initial internal transitions, they can also easily be proved to be weak faster-than precongruent, according

to Def. 4.13. Thus, 2ARR _ 2BUF, i.e., the 2-place array is faster than the 2-place buffer in all contexts,

although functionally equivalent, which matches our abovementioned intuition.

6. Discussion and Related Work. This section highlights the unique features of our approach when

compared to related work. There exists a large number of papers on both continuous and discrete timed

process algebras; we refer the reader to [6] for a survey. Usually, these algebras focus on modeling synchronous

systems, where components are under the regime of a global clock, and do not present faster-than relations.

25

TABLE 5.1

Pairs in the considered weak faster-than relation

((BelBe , (BelBe) \ {c})
((BflBe , (BelBf) \ {c})
((BflB_, (B_IBf) \ {c})
((BalBf, (BelBf)\{c})
((BflBa, (BflBe)\{c})

(BflBe , (BflBe) \ {c})
(BfIB_ , (BfIB_) \ {c})
(BeIB_, (BelBe) \ {c})
(BfIBa, (BelBf)\{c})
(BaIBf , (BflBe)\{c})

(BelBf , (BflBe) \
(BflBf , (BflBf) \
(B_IBe, (BelBe) \
(BelBf, (BelBf)\
(B_IBe, (B_IBe)\

{c}) (B_IB_, (B_IB_)\ {c})
{c}) (B_IBf , (BflB_) \ {c})
{c}) (B_IBf , (B_IBf) \ {c})
{c}) (BelB_, (B_IBe)\ {c})
{_})

The latter is not surprising because, as argued in [29], it seems unlikely that, for synchronous systems, a

faster-than preorder satisfying a few reasonable properties and being a precongruence for parallel composition

exists. Traditionally, timed process algebras aiming at reasoning about synchronous systems have two

common features: a delay operator specifying the exact time a process has to wait before it can proceed,

and a timeout operator stating which enabled actions are withdrawn and which ones are additionally offered

at a particular instant of time. In contrast, our work deals with asynchronous systems where actions are

not enabled or disabled as time passes. Indeed, we added discrete time to CCS simply to evaluate the

performance of asynchronous processes and not to increase the functional expressiveness of CCS. We did

this by introducing a clock prefix operator specifying a single time bound which we interpreted as upper

bound for delays. Some other timed process algebras annotate actions or processes with upper as well as

with lower time bounds in the form of timing intervals [5, 15]; however, no faster-than relations have been

defined in these settings.

The idea to investigate a (bi)simulation-based approach to compare the worst-case timing behavior

of asynchronous systems was born out of the second author's research on faster-than preorders developed

around DeNicola and Hennessy's testing theory [16]. This research was first conducted within the setting

of Petri nets [9, 22, 35, 36] and then for a TCSP-style [34] process algebra, called PAFAS [23, 37]. The

justification for adopting a testing approach is reflected in a fundamental result stating that the faster-than

testing preorder based on continuous-time semantics coincides with the analogue testing preorder based

on discrete-time semantics [23]. This result, however, depends very much on the testing setting and is

different from the sort of discretization obtained for timed automata [2]. Nevertheless, PAFAS has certain

disadvantages when compared to TACS. First of all, note that TACS allows one to specify arbitrary upper

time bounds by nesting a-prefixes. In PAFAS, every action has the same integrated upper time bound,

namely 1, i.e., an a-prefix in PAFAS corresponds to a a.a.-prefix in TACS. Our algebra TACS is also more

expressive than PAFAS from a different point of view. Consider a process of the form a.(PIQ), for which

the best counterpart in PAFAS is T.(PIQ). Here, the T-step incorporates a potential delay, but it can also

decide choices which a a-step cannot. Moreover, the equational laws established for the faster-than testing

preorder of PAFAS, which provided an axiomatization for the class of finite sequential processes just as we

did in this paper, are quite complicated. In contrast, the simple axioms presented here provide a clear,

comprehensive insight into our semantics.

Some researchers consider testing [16] to be the more intuitive approach to semantics than bisiraula-

tion [26]. However, we feel that both are related within our setting. Essentially, the faster-than testing

preorder presented for PAFAS in [23] is characterized as inclusion of traces annotated by refusal sets which

underly the TACS approach, too. In our faster-than precongruences we require that, when a time step is

matched, the urgent action set of the faster process contains the urgent action set of the slower one. One

26

may also say that non-urgent actions can be refused at this moment. If we call a set of non-urgent actions a

refusal set, we could replace any clock transition by multiple transitions, one for each refusal set. Then, each

refusal-set-transition of the faster process is matched by an equally labeled transition of the slower one.

Regarding other research concerning faster-than relations, our approach is most closely related to work

by Moiler and Torts [29] who developed a bisimulation-based faster-than preorder within the discrete-

time process algebra _TCCS. In their approach, asynchronous processes are modeled without any progress

assumption. Instead, processes may idle arbitrarily long and, in addition, fixed delays may be specified.

Hence, their setting considers best-case behavior, as the worst-case would be that for an arbitrary long

time nothing happens. Moiler and Torts present an axiomatization of their faster-than preorder for finite

sequential processes and discuss the problem of axiomatizing parallel composition, for which only valid laws

for special cases are provided (cf. Sec. 4.2). It has to be mentioned here that the axioms and the behavioral

preorder of Moiler and Torts do not completely correspond. In fact, writing g for what is actually written (I)

in [29], a.g.b.O + a.b.O is equally fast as a.b.O, which does not seem to be derivable from the axioms. Also,

the intuition behind relating these processes is not so clear, since a.a.g.b.O + a.a.b.O is not necessarily faster

than or equally fast as a.a.b.O. Since the publication in 1991, also Moiler and Torts noticed this shortcoming

of their preorder [27]. The problem seems to lie in the way in which a transition P --%+ P' of the faster

process is matched: For intuitive reasons, the slower process must be allowed to perform time steps before

engaging in a. Now the slower process is ahead in time, whence P' should be allowed some additional time

steps. What might be wrong is that P' must perform these additional time steps immediately. We assume

that a version of our indexed faster-than relation, which relaxes the latter requirement, would be more

satisfactory. It would also be interesting to study the resulting preorder and compare it in detail to our

faster-than precongruence; this should give a better understanding what worst-case and best-case timing

behavior means for asynchronous systems in (hi)simulation-based settings.

A different idea for relating processes with respect to speed was investigated by Corradini et al. [14] within

the so-called ill-timed-but-well-caused approach [I, 17]. The key of this approach is that components attach

local time stamps to actions; however, actions occur as in an untimed algebra. Hence, in a sequence of actions

exhibited by different processes running in parallel, local time stamps might decrease. This way, the timed

algebra technically stays very close to untimed ones, but the "ill-timed" runs make the faster-than preorder

of Corradini et al. difficult to relate to our approach.

Other research compares the efficiency of untimed CCS-like terms by counting internal actions either

within a testing framework [13, 31] or a bisimulation-based setting [3, 4]. In all these approaches, except

in [13] which does not consider parallel composition, runs of parallel processes are seen to be the interleaved

runs of their component processes. Consequently, e.g., process (w.a.O I w.g.b.O) \ {a} is as efficient as process

W.W.w.b.0, whereas in our setting (g.a.Olg.g.b.O) \ {a} is strictly faster than g.g.w.b.0.

7. Conclusions and Future Work. To consider the worst-case efficiency of asynchronous processes,

i.e., those processes whose functional behavior is not influenced by timing issues, we defined the process

algebra TACS. This algebra conservatively extends CCS by a clock prefix, which represents a delay of

at most one time unit, and it takes time to be discrete. For TACS processes we then introduced a simple

(hi)simulation-based faster-than preorder and showed this to coincide with two other variants of the preorder,

both of which might be intuitively more convincing but which are certainly more complicated. We also

developed a semantic theory for our faster-than preorder, including a coarsest precongruence result and an

axiomatization for finite sequential processes, and investigated a corresponding "weak" preorder.

27

Future work should proceed along two orthogonal directions involving both theoretical and practical

aspects. From a theory point of view, we intend to extend our axiomatization to larger classes of processes

and also to our weak faster-than preorder. Recent papers provide an outline how the latter can be done for

recursive processes in the presence of preemption [10, 20]; as a first step, one could also restrict attention

to processes where parallel composition only occurs as top-level operator. Moreover, it remains an open

question whether the faster-than precongruence, when defined for continuous time, coincides with the one

presented here for discrete time, as is the case in the testing scenario presented in [35]. For putting the novel

theory into practice, we plan to implement our process algebra and a decision procedure for our faster-than

precongruence in the Concurrency Workbench [12], a formal verification tool.

REFERENCES

[1] L. ACETO AND D. MURPHY, Timing and causality in process algebra, Acta Informatica, 33 (1996),

pp. 317-350.

[2] R. ALUR AND D. DILL, A theory of timed automata, Theoretical Computer Science, 126 (1994), pp. 183-

235.

[3] S. ARUN-KUMAR AND M. HENNESSY, An efficiency preorder for processes, Acta Informatica, 29 (1992),

pp. 737-760.

[4] S. ARUN-KUMAR AND V. NATARAJAN, Conformance: A precongruence close to bisimilarity, in Inter-

national Workshop on Structures in Concurrency Theory (STRICT '95), J. Desel, ed., Workshops

in Computing, Springer-Verlag, May 1995, pp. 55-68.

[5] J. BAETEN AND J. BERGSTRA, Real time process algebra, Formal Aspects of Computing, 3 (1991),

pp. 142-188.

[6] J. BAETEN AND C. MIDDELBURG, Process Algebra with Timing: Real Time and Discrete Time, in

Bergstra et al. [8], 2000, ch. 10.

[7] J. BAETEN AND W. WEIJLAND, Process Algebra, Vol. 18 of Cambridge Tracts in Theoretical Computer

Science, Cambridge University Press, Cambridge, UK, 1990.

[8] J. BERGSTRA, A. PONSE, AND S. SMOLKA, eds., Handbook of Process Algebra, Elsevier Science, 2000.

[9] E. BIHLER AND W. VOGLER, Efficiency of token-passing MUTEX-solutions - Some experiments, in

19th International Conference on the Application and Theory of Petri Nets (ICATPN '98), J. Desel

and M. Silva, eds., Vol. 1420 of Lecture Notes in Computer Science, Lisbon, Portugal, June 1998,

Springer-Verlag, pp. 185-204.

BRAVETTI AND R. GORRIERI, A complete axiomatization for observational congruence of prioritized

finite-state behaviors, in 27th International Colloquium on Automata, Languages and Programming

(ICALP 2000), U. Montanari, J. Rolim, and E. Welzl, eds., Vol. 1853 of Lecture Notes in Computer

Science, Geneva, Switzerland, July 2000, Springer-Verlag, pp. 744-755.

CLEAVELAND, G. LUTTGEN, AND M. MENDLER, An algebraic theory of multiple clocks, in 8th Inter-

national Conference on Concurrency Theory (CONCUR '97), A. Mazurkiewicz and J. Winkowski,

eds., Vol. 1243 of Lecture Notes in Computer Science, Warsaw, Poland, July 1997, Springer-Verlag,

pp. 166-180.

CLEAVELAND AND S. SIMS, The NCSU Concurrency Workbench, in Computer Aided Verification

(CAV '96), R. Alur and T. Henzinger, eds., Vol. 1102 of Lecture Notes in Computer Science, New

Brunswick, N J, USA, July 1996, Springer-Verlag, pp. 394-397.

[10] M.

[11] R.

[12] R.

28

[13]R.

[14]F.

[15]F.

[16]R.

[17]R.

[18]M.
[19]M.

[20]H.

[21]C.
[22]L.

[23]

[24] N.
[25] R.

[26]

[27] F.
[28] F.

[29]

[30] v.

[31] V.

CLEAVELAND AND A. ZWARICO, A theory of testing for real time, in 6th Annual Symposium on

Logic in Computer Science (LICS '91), Amsterdam, The Netherlands, July 1991, IEEE Computer

Society Press, pp. 110-119.

CORRADINI, R. GORRIERI, AND M. ROCCETTI, Performance preorder and competitive equivalence,

Acta Informatica, 34 (1997), pp. 805-835.

CORRADINI AND M. PISTORE, Closed interval process algebra versus open interval process algebra,

Acta Informatica, 37 (2000).

DENICOLA AND M. HENNESSY, Testing equivalences for processes, Theoretical Computer Science,

34 (1983), pp. 83-133.

GORRIERI, M. ROCCETTI, AND E. STANCAMPIANO, A theory of processes with durational actions,

Theoretical Computer Science, 140 (1995), pp. 73-94.

HENNESSY, Algebraic Theory of Processes, MIT Press, Boston, MA, USA, 1988.

HENNESSY AND T. REGAN, A process algebra for timed systems, Information and Computation,

117 (1995), pp. 221-239.

HERMANNS AND M. LOHREY, Priority and maximal progress are completely axiomatisable, in 9th

International Conference on Concurrency Theory (CONCUR '98), D. Sangiorgi and R. de Simone,

eds., Vol. 1466 of Lecture Notes in Computer Science, Nice, France, September 1998, Springer-Verlag,

pp. 237-252.

HOARE, Communicating Sequential Processes, Prentice Hall, London, UK, 1985.

JENNER AND W. VOGLER, Fast asynchronous systems in dense time, in 23rd International Col-

loquium on Automata, Languages and Programming (ICALP '96), F. Meyer auf der Heide and

B. Monien, eds., Vol. 1099 of Lecture Notes in Computer Science, Paderborn, Germany, July 1996,

Springer-Verlag, pp. 75-86.

--, Comparing the efficiency of asynchronous systems, in 5th International AMAST Workshop on

Formal Methods for Real-time and Probabilistic Systems (ARTS '99), J.-P. Katoen, ed., Vol. 1601 of

Lecture Notes in Computer Science, Bamberg, Germany, May 1999, Springer-Verlag, pp. 172-191.

LYNCH, Distributed Algorithms, Morgan Kaufmann Publishers, San Francisco, CA, USA, 1996.

MILNER, A complete inference system for a class of regular behaviours, Journal of Computer and

System Sciences, 28 (1984), pp. 439-466.

--, Communication and Concurrency, Prentice Hall, London, UK, 1989.

MOLLER, Private communication, 2000.

MOLLER AND C. TOFTS, A temporal calculus of communicating systems, in 1st International Confer-

ence on Concurrency Theory (CONCUR '90), J. Baeten and J. Klop, eds., Vol. 458 of Lecture Notes

in Computer Science, Amsterdam, The Netherlands, August 1990, Springer-Verlag, pp. 401-415.

--, Relating processes with respect to speed, in 2nd International Conference on Concurrency Theory

(CONCUR '91), J. Baeten and J. Groote, eds., Vol. 527 of Lecture Notes in Computer Science,

Amsterdam, The Netherlands, August 1991, Springer-Verlag, pp. 424-438.

NATARAJAN, Degrees of Delay: Semantic Theories for Priority, Efficiency, Fairness, and Predictabil-

ity in Process Algebras, Ph.D. thesis, North Carolina State University, Raleigh, NC, USA, August

1996.

NATARAJAN AND R. CLEAVELAND, An algebraic theory of process efficiency, in 11th Annual Sym-

posium on Logic in Computer Science (LICS '96), New Brunswick, NJ, USA, July 1996, IEEE

Computer Society Press, pp. 63-72.

29

[32] G.

[33] D.

[34] S.

[35] W.

[36]

[37] W.

[38] W.

REED AND A. ROSCOE, The timed failures-stability model for CSP, Theoretical Computer Science,

211 (1999), pp. 85-127.

SANGIORGI AND R. MILNER, The problem of 'weak bisimulation up to', in 3rd International Con-

ference on Concurrency Theory (CONCUR '92), R. Cleaveland, ed., Vol. 630 of Lecture Notes in

Computer Science, Stony Brook, NY, USA, August 1992, Springer-Verlag, pp. 32-46.

SCHNEIDER, An operational semantics for timed CSP, Information and Computation, 116 (1995),

pp. 193-213.

VOGLER, Faster asynchronous systems, in 6th International Conference on Concurrency Theory

(CONCUR '95), I. Lee and S. Smolka, eds., Vol. 962 of Lecture Notes in Computer Science, Philadel-

phia, PA, USA, August 1995, Springer-Verlag, pp. 299-312.

--, Efficiency of asynchronous systems and read arcs in Petri nets, in 24th International Collo-

quium on Automata, Languages and Programming (ICALP '97), P. Degano, R. Gorrieri, and

A. Marchetti-Spaccamela, eds., Vol. 1256 of Lecture Notes in Computer Science, Bologna, Italy,

July 1997, Springer-Verlag, pp. 538-548.

VOGLER AND L. JENNER, Axiomatizing a fragment of PAFAS, Electronic Notes in Computer

Science, 39 (2000).

YI, CCS ÷ time = An interleaving model for real time systems, in 18th International Collo-

quium on Automata, Languages and Programming (ICALP '91), J. Leach Albert, B. Monien, and

M. Rodrfguez Artalejo, eds., Vol. 510 of Lecture Notes in Computer Science, Madrid, Spain, July

1991, Springer-Verlag, pp. 217-228.

30

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

January 2001 Contractor Report

4. TITLE AND SUBTITLE

A faster-than relation for asynchronous processes

6. AUTHOR(S)

Gerald Liittgen and Walter Vogler

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
ICASE

Mail Stop 132C

NASA Langley Research Center

Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-2199

5. FUNDING NUMBERS

C NAS1-97046

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 2001-2

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-2001-210651
ICASE Report No. 2001-2

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell
Final Report

To be submitted to the 12th International Conference on Concurrency Theory.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 60, 61
Distribution: Nonstandard

Availability: NASA-CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This paper introduces a novel (bi)simulation-based faster-than preorder which relates asynchronous processes with
respect to their worst-case timing behavior. The studies are conducted for a conservative extension of the process

algebra CCS, called TACS, which permits the specification of maximal time bounds of actions. TACS complements

work in plain process algebras which compares asynchronous processes with respect to their functional reactive

behavior only, and in timed process algebras which focus on analyzing synchronous processes. The most unusual

contribution of this paper is in showing that the proposed faster-than preorder coincides with two other and at least

equally appealing preorders, one of which considers the absolute times at which actions occur in system runs. The
paper also develops the semantic theory of TACS: it characterizes the largest precongruence contained in the faster-

than preorder. A small example relating two implementations of a simple storage system testifies to the practical

utility of the new theory.

14. SUBJECT TERMS

asynchronous systems, bisimulation, faster-than preorder, process algebra,

timing behavior

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATIOI_

OF THIS PAGE

Unclassified

15. NUMBER OF PAGES

35

16. PRICE CODE

A03
19. SECURITY CLASSIFICATION 20. LIMITATION

OF ABSTRACT OF ABSTRACT

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

